[1] YI S,CHEN Z,SHE F,et al.IDC-Net:Breast cancer classification network based on BI-RADS 4[J].Pattern Recognit,2024(150):110323. [2] 伍清清,庞溢,梁少芬,等.DCE-MRI多参数定量特征对乳腺癌腋窝淋巴结转移风险的预测研究[J].广州医药,2024,55(12):1450-1455. [3] 闫晨名,蔡艺威,程立浩,等.乳腺浸润性微乳头状癌的多组学研究进展[J].国际医药卫生导报,2024,30(15):2465-2469. [4] 赵建颖,朱亮飞,杨江宁.超声萤火虫技术检查乳腺肿块微钙化及其鉴别诊断价值[J].现代医院,2022,22(9):1474-1476. [5] GRAŻYŃSKA A,NIEWIADOMSKA A,OWCZAREK A J,et al.BIRADS 4-Is it possible to downgrade lesions that do not enhance on recombinant contrast-enhanced mammography images?[J].Eur J Radiol,2023(167):111062. [6] LIU Y,WANG S,QU J,et al.High-temporal resolution DCE-MRI improves assessment of intra- and peri-breast lesions categorized as BI-RADS 4[J].BMC Med Imaging,2023,23(1):58. [7] 尚怡研,王贇霞,郭亚欣,等.多参数MRI影像组学术前预测乳腺癌HER-2低表达的临床研究[J].临床放射学杂志,2024,43(8):1286-1291. [8] LI S,XIN Q,LI Y,et al.Three-dimensional visualization of breast cancer pathology evolution in clinical patient tissues with NIR-II imaging[J].Nano Lett,2024,24(33):10337-10347. [9] 章俊,张海青.MRI常规序列弥散加权成像及动态增强扫描在乳腺病变诊断中的应用价值[J].安徽医学,2023,44(12):1456-1461. [10] TSUNODA H,MOON W K.Beyond BI-RADS:Nonmass abnormalities on breast ultrasound[J].Korean J Radiol,2024,25(2):134-145. [11] HEMALATHA V,DEV B,VANITHA RANI N,et al.Exploring the relationship between CD 166 expression and breast imaging reporting and data system(BI-RADS)scores in breast cancer patients and healthy volunteers[J].Cureus,2023,15(11):e48145. [12] 冯琬婷,滕屹霖,杨会芳,等.基于乳腺癌筛查队列的超声BI-RADS分类进展影响因素分析[J].四川大学学报(医学版),2024,55(6):1550-1556. [13] 黄文冲,汤间仪,马慧.数字乳腺三维断层融合摄影技术联合MR波谱在乳腺高危病灶诊断中的应用[J].广州医药,2023,54(1):52-55. [14] 于海静,柳海涛,张安秦,等.多中心乳腺癌筛查中乳光超诊断BI-RADS3和4级结节的价值[J].中华肿瘤防治杂志,2022,29(13):996-1003. [15] 吴苑滨,徐晓伟,钟华成.彩色多普勒超声与MRI联合诊断女性早期乳腺癌及分期的临床应用价值[J].分子影像学杂志,2024,47(4):391-396. [16] DU Y,MA J,WU T,et al.Downgrading Breast Imaging Reporting and Data System categories in ultrasound using strain elastography and computer-aided diagnosis system:A multicenter,prospective study[J].British Journal of Radiology,2024,97(1162):1653-1660. [17] 周桂萍,李建梅,李建柱.超声SWE联合MRI对非肿块型乳腺癌的诊断价值分析[J].临床误诊误治,2024,37(11):34-38. [18] HUANG Z,XU J,HUANG B,et al.Molybdenum target X-ray examination and multimodality MRI in the diagnosis of breast cancer[J].Eur J Gynaecol Oncol,2023,44(4):118-123. [19] ORLANDO A A M,CLAUSER P,ZARCARO C,et al.MRI insights in breast imaging[J].Curr Med Imaging,2024(20):e15734056274670. [20] 张莹莹,苑婉茹,栗河舟,等.妊娠哺乳期乳腺肿块的超声征象及BI-RADS分类价值[J].中国临床医学影像杂志,2023,34(8):535-538,543. [21] 向森,何苗,曹雨晴,等.多模态MRI检查在乳腺BI-RADS 4类结节鉴别诊断中的价值[J].中国CT和MRI杂志,2024,22(12):88-91. [22] 杨珂,苗重昌.基于不同磁共振成像技术的影像组学在乳腺病变鉴别诊断中的应用[J].磁共振成像,2024,15(9):189-193,200. [23] 蒋平平,陈燕清,黄涛,等.基于两种Dixon技术的乳腺磁共振T2WI序列图像质量对比研究[J].磁共振成像,2024,15(3):158-162. [24] 刘磊,徐慧慧,王佳,等.乳腺MRI检查DWI、DCE-MRI定量参数与乳腺癌分子亚型及Ki-67表达的关系[J].河北医科大学学报,2024,45(7):779-784. [25] HIRAHARA D.The fundamentals of diffusion weighted imaging(DWI)in the mammary region and its application to artificial intelligence(AI)[J].Nihon Hoshasen Gijutsu Gakkai Zasshi,2023,79(11):1310-1317. [26] SUN Z,ZHOU Z,WANG L,et al.IVIM and DCE-MRI in predicting phenotypic subtypes and Nottingham prognostic index of breast cancer[J]. J Coll Physicians Surg Pak,2024,34(4):400-406. [27] 薛秋榕,郑幼榕,沈晓燕,等.MR动态增强TIC曲线联合弥散加权成像检查对乳腺病变鉴别诊断的价值[J].中国医药科学,2025,15(1):157-160. [28] 李琳,崔文静,崔延安,等.动态增强MRI在乳腺非肿块样强化良恶性病变鉴别诊断中的临床应用研究[J].东南大学学报(医学版),2023,42(6):903-908. [29] ZARIC O,PINKER K,ZBYN S,et al.Quantitative sodium MR imaging at 7 T:Initial results and comparison with diffusion-weighted imaging in patients with breast tumors[J].Radiology,2016,280(1):39-48. [30] 钱利萍,周长玉,谢铁明,等.动态对比增强磁共振成像感兴趣区勾画技术在乳腺癌诊断中的临床研究[J].中国癌症杂志,2018,28(2):123-127. |