[1] 郑荣寿,陈茹,韩冰峰,等.2022年中国恶性肿瘤流行情况分析[J].中华肿瘤杂志,2024,46(3):221-231. [2] GOLDHIRSCH A,WINER E P,COATES A S,et al.Personalizing the treatment of women with early breast cancer:highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013[J].Ann Oncol,2013,24(9):2206-2223. [3] KUERER H M,SMITH B D,KRISHNAMURTHY S,et al.Eliminating breast surgery for invasive breast cancer in exceptional responders to neoadjuvant systemic therapy:A multicentre,single-arm,phase 2 trial[J].Lancet Oncol,2022,23(12):1517-1524. [4] SPRING L M,BAR Y,ISAKOFF S J.The evolving role of neoadjuvant therapy for operable breast cancer[J].J Natl Compr Canc Netw,2022,20(6):723-734. [5] BRAMAN N,PRASANNA P,WHITNEY J,et al.Association of peritumoral radiomics with tumor biology and pathologic response to preoperative targeted therapy for HER2(ERBB2)-positive breast cancer[J].JAMA Netw Open,2019,2(4):e192561. [6] 肖勤,顾雅佳.影像学在评估乳腺癌新辅助化疗中反应的应用与进展[J].肿瘤影像学,2020,29(2):65-72. [7] LI W,NEWITT D C,GIBBS J,et al.Predicting breast cancer response to neoadjuvant treatment using multi-feature MRI:results from the I-SPY 2 TRIAL[J].NPJ Breast Cancer,2020,6(1):63. [8] LIU Z,LI Z,QU J,et al.Radiomics of multiparametric MRI for pretreatment prediction of pathologic complete response to neoadjuvant chemotherapy in breast cancer:A multicenter study[J].Clin Cancer Res,2019,25(12):3538-3547. [9] ZHOU Y,GU H L,ZHANG X L,et al.Multiparametric magnetic resonance imaging-derived radiomics for the prediction of disease-free survival in early-stage squamous cervical cancer[J].Eur Radiol,2022,32(4):2540-2551. [10] 董春桐,毛宁,谢海柱,等.影像组学及深度学习在预测乳腺癌新辅助化疗疗效中的研究进展[J].医学影像学杂志,2023,33(4):652-656. [11] YOSHIDA K,KAWASHIMA H,KANNON T,et al.Prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer using radiomics of pretreatment dynamic contrast-enhanced MRI[J].Magn Reson Imaging,2022(92):19-25. [12] SHI Z,HUANG X,CHENG Z,et al.MRI-based quantification of intratumoral heterogeneity for predicting treatment response to neoadjuvant chemotherapy in breast cancer[J].Radiology,2023,308(1):e222830. [13] ZHENG G,PENG J,SHU Z,et al.Predicting pathological complete response to neoadjuvant chemotherapy in breast cancer patients:use of MRI radiomics data from three regions with multiple machine learning algorithms[J].J Cancer Res Clin Oncol,2024,150(3):147. [14] LIN Y,WANG J,LI M,et al.Prediction of breast cancer and axillary positive-node response to neoadjuvant chemotherapy based on multi-parametric magnetic resonance imaging radiomics models[J].Breast(Edinburgh,Scotland),2024(76):103737. [15] LI C,LU N,HE Z,et al.A noninvasive tool based on magnetic resonance imaging radiomics for the preoperative prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer[J].Ann Surg Oncol,2022,29(12):7685-7693. [16] 李培. 基于MRI瘤内和瘤周影像组学对乳腺癌新辅助化疗后病理完全缓解的预测[D].郑州:河南大学,2023. [17] DOGAN B E,YUAN Q,BASSETT R,et al.Comparing the performances of magnetic resonance imaging size vs pharmacokinetic parameters to predict response to neoadjuvant chemotherapy and survival in patients with breast cancer[J].Curr Probl Diagn Radiol,2019,48(3):235-240. [18] ZENG Q,XIONG F,LIU L,et al.Radiomics based on DCE-MRI for predicting response to neoadjuvant therapy in breast cancer[J].Acad Radiol,2023,30(Suppl 2):S38-S49. [19] GUO L,DU S,GAO S,et al.Delta-radiomics based on dynamic contrast-enhanced MRI predicts pathologic complete response in breast cancer patients treated with neoadjuvant chemotherapy[J].Cancers(Basel),2022,14(14):3515. [20] LIU S,DU S,GAO S,et al.A delta-radiomic lymph node model using dynamic contrast enhanced MRI for the early prediction of axillary response after neoadjuvant chemotherapy in breast cancer patients[J].BMC Cancer,2023,23(1):15. [21] 周嘉音,尤超,王泽洲,等.基于MRI时空异质性模型预测三阴性乳腺癌病理完全缓解[J].磁共振成像,2024,15(1):28-34. [22] HUANG Y,ZHU T,ZHANG X,et al.Longitudinal MRI-based fusion novel model predicts pathological complete response in breast cancer treated with neoadjuvant chemotherapy:a multicenter,retrospective study[J].EClinicalMedicine,2023(58):101899. [23] ZHAO X,BAI J W,GUO Q,et al.Clinical applications of deep learning in breast MRI[J].Biochim Biophys Acta Rev Cancer,2023,1878(2):188864. [24] PENG Y,CHENG Z,GONG C,et al.Pretreatment DCE-MRI-Based deep learning outperforms radiomics analysis in predicting pathologic complete response to neoadjuvant chemotherapy in breast cancer[J].Front Oncol,2022(12):846775. [25] DUANMU H,HUANG P B,BRAHMAVAR S,et al.Prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer using deep learning with integrative imaging,molecular and demographic data[M]//Lecture Notes in Computer Science.Cham:Springer International Publishing,2020:242-252. [26] HA R,CHIN C,KARCICH J,et al.Prior to initiation of chemotherapy,can we predict breast tumor response?Deep learning convolutional neural networks approach using a breast MRI tumor dataset[J].J Digit Imaging,2019,32(5):693-701. [27] QU Y H,ZHU H T,CAO K,et al.Prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer using a deep learning(DL)method[J].Thorac Cancer,2020,11(3):651-658. [28] COMES M C,FANIZZI A,BOVE S,et al.Early prediction of neoadjuvant chemotherapy response by exploiting a transfer learning approach on breast DCE-MRIs[J].Sci Rep,2021,11(1):14123. [29] DU Y,GUO W,XIAO Y,et al.Ultrasound-based deep learning radiomics model for differentiating benign,borderline,and malignant ovarian tumours:a multi-class classification exploratory study[J].BMC Med Imaging,2024,24(1):89. [30] WEI S,SHI B,ZHANG J,et al.Differentiating mass-like tuberculosis from lung cancer based on radiomics and CT features[J].Transl Cancer Res,2021,10(10):4454-4463. [31] LI Y,FAN Y,XU D,et al.Deep learning radiomic analysis of DCE-MRI combined with clinical characteristics predicts pathological complete response to neoadjuvant chemotherapy in breast cancer[J]. Front Oncol,2022(12):1041142. [32] BITENCOURT A G V,GIBBS P,ROSSI SACCARELLI C,et al.MRI-based machine learning radiomics can predict HER2 expression level and pathologic response after neoadjuvant therapy in HER2 overexpressing breast cancer[J].EBioMedicine,2020(61):103042. [33] ZHOU Z,ADRADA B E,CANDELARIA R P,et al.Prediction of pathologic complete response to neoadjuvant systemic therapy in triple negative breast cancer using deep learning on multiparametric MRI[J].Sci Rep,2023,13(1):1171. [34] YE G,HE S,PAN R,et al.Research on DCE-MRI images based on deep transfer learning in breast cancer adjuvant curative effect prediction[J].J Healthc Eng,2022(2022):4477099. [35] WANG L.Mammography with deep learning for breast cancer detection[J].Front Oncol,2024(14):1281922. |