[1] MO M, WANG S, ZHOU Y, et al. Mesenchymal stem cell subpopulations: phenotype, property and therapeutic potential [J]. Cell Mol Life Sci, 2016,73(17):3311-3321. [2] MOHAMMADIAN M, ABASI E, AKBARZADEH A. Mesenchymal stem cell-based gene therapy: a promising therapeutic strategy [J]. Artif Cells Nanomed Biotechnol, 2016,44(5):1206-1211. [3] PELEKANOS R A, SARDESAI V S, FUTREGA K, et al. Isolation and expansion of mesenchymal stem/stromal cells derived from human placenta tissue [J]. J Vis Exp, 2016, 112:54204. [4] PASSIPIERI J A, KASAI-BRUNSWICK T H, SUHETT G, et al. Improvement of cardiac function by placenta-derived mesenchymal stem cells does not require permanent engraftment and is independent of the insulin signaling pathway [J]. Stem Cell Res Ther, 2014,5(4):102. [5] KIM M J, SHIN K S, JEON J H, et al. Human chorionic-plate-derived mesenchymal stem cells and Wharton's jelly-derived mesenchymal stem cells: a comparative analysis of their potential as placenta-derived stem cells [J]. Cell Tissue Res, 2011, 346(1):53-64. [6] LI L, JAISWAL P K, MAKHOUL G, et al. Hypoxia modulates cell migration and proliferation in placenta-derived mesenchymal stem cells [J]. J Thorac Cardiovasc Surg, 2017, 154(2):543-552. [7] EJTEHADIFAR M, SHAMSASENJAN K, MOVASSAGHPOUR A, et al. The effect of hypoxia on mesenchymal stem cell biology [J]. Adv Pharm Bull, 2015,5(2):141-149. [8] 孙逊沙,吴洁莹,陈劲松,等. 低氧预处理人胎盘绒毛膜间充质干细胞环状RNA筛选 [J]. 中国医药导报,2018,15(18):9-11. [9] PASQUINELLI A E. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship [J]. Nat Rev Genet, 2012,13(4):271-282. [10] MUZ B, de LA PUENTE P, AZAB F, AZAB A K. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy [J]. Hypoxia (Auckl), 2015,3:83-92. [11] SEMENZA G L. Hypoxia-inducible factor 1: master regulator of O2 homeostasis [J]. Curr Opin Genet Dev, 1998,8(5):588-594. [12] HAQUE N, RAHMAN M T, ABU KASIM N H, et al. Hypoxic culture conditions as a solution for mesenchymal stem cell based regenerative therapy [J]. Sci World J, 2013,2013:632972. [13] BURAVKOVA L B, ANDREEVA E R, GOGVADZE V, et al. Mesenchymal stem cells and hypoxia: where are we? [J]. Mitochondrion, 2014,19(Pt)A:105-112. [14] YANG C, WU D, GAO L, et al. Competing endogenous RNA networks in human cancer: hypothesis, validation, and perspectives [J]. Oncotarget, 2016,7(12):13479-13490. [15] HAN C, SEEBACHER N A, HORNICEK F J, et al. Regulation of microRNAs function by circular RNAs in human cancer [J]. Oncotarget, 2017,8(38):64622-64637. [16] LI X, PENG B, ZHU X, et al. Changes in related circular RNAs following ERβ knockdown and the relationship to rBMSC osteogenesis [J]. Biochem Biophys Res Commun, 2017,493(1): 100-107. [17] ZHANG M, JIA L, ZHENG Y. circRNA Expression profiles in human bone marrow stem cells undergoing osteoblast differentiation [J]. Stem Cell Rev, 2018, (Epub ahead of print). [18] CLARK E A, KALOMOIRIS S, NOLTA JA, et al. Concise review: MicroRNA function in multipotent mesenchymal stromal cells [J]. Stem Cells, 2014,32(5):1074-1082. [19] HAMAM D, ALI D, KASSEM M, et al. microRNAs as regulators of adipogenic differentiation of mesenchymal stem cells [J]. Stem Cells Dev, 2015,24(4):417-425. [20] SEKAR D, SARAVANAN S, KARIKALAN K, et al. Role of microRNA 21 in mesenchymal stem cell (MSC) differentiation: a powerful biomarker in MSCs derived cells [J]. Curr Pharm Biotechnol, 2015,16(1):43-48. [21] KANG H, HATA A. The role of microRNAs in cell fate determination of mesenchymal stem cells: balancing adipogenesis and osteogenesis [J]. BMB Rep, 2015,48(6):319-323. [22] YUAN Z, LI Q, LUO S, et al. PPARγ and Wnt signaling in adipogenic and osteogenic differentiation of mesenchymal stem cells [J]. Curr Stem Cell Res Ther, 2016,11(3):216-25. [23] FANG S, DENG Y, GU P, et al. MicroRNAs regulate bone development and regeneration [J]. Int J Mol Sci, 2015,16(4):8227-8253. [24] MAJIDINIA M, SADEGHPOUR A, YOUSEFI B. The roles of signaling pathways in bone repair and regeneration [J]. J Cell Physiol, 2018,233(4):2937-2948. [25] MEI Y, BIAN C, LI J, et al. MiR-21 modulates the ERK-MAPK signaling pathway by regulating SPRY2 expression during human mesenchymal stem cell differentiation [J]. J Cell Biochem, 2013,114(6):1374-1384. [26] JADLOWIEC J, KOCH H, ZHANG X, et al. Phosphophoryn regulates the gene expression and differentiation of NIH3T3, MC3T3-E1, and human mesenchymal stem cells via the integrin/MAPK signaling pathway [J]. J Biol Chem, 2004,279(51):53323-53330. [27] JAISWAL R K, JAISWAL N, BRUDER S P, et al. Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase [J]. J Biol Chem, 2000,275(13): 9645-9652. |