[1] CHENG R, CHEN J, WANG Y, et al. Dihydrotanshinone induces apoptosis of sgc7 901 and mgc803 cells via activation of jnk and p38 signalling pathways[J]. Pharm Biol,2016,54(12):3019-3025. [2] WANG L, HU T, SHEN J, et al. Dihydrotanshinone i induced apoptosis and autophagy through caspase dependent pathway in colon cancer[J]. Phytomedicine, 2015,22(12):1079-1087. [3] HU T, TO K K, WANG L, et al. Reversal of p-glycoprotein(p-gp) mediated multidrug resistance in colon cancer cells by cryptotanshinone and dihydrotanshinone of salvia miltiorrhiza[J]. Phytomedicine, 2014,21(11):1264-1272. [4] WANG L, YEUNG JH, HU T, et al. Dihydrotanshinone induces p53-independent but ros-dependent apoptosis in colon cancer cells[J]. Life Sci, 2013,93(8):344-351. [5] TSAI S L, SUK F M, WANG C I, et al. Anti-tumor potential of 15,16-dihydrotanshinone I against breast adenocarcinoma through inducing g1 arrest and apoptosis[J]. Biochem Pharmacol, 2007,74(11):1575-1586. [6] LUO J, MENG X, SU J, et al. Biotin-modified polylactic-co-glycolic acid nanoparticles with improved antiproliferative activity of 15,16-dihydrotanshinone i in human cervical cancer cells[J]. J Agric Food Chem, 2018,66(35):9219-9230. [7] CHEN X, LI Q, HE Y, et al. 15,16-dihydrotanshinone i induces apoptosis and inhibits the proliferation, migration of human osteosarcoma cell line 143 b in vitro[J]. Anticancer Agents Med Chem, 2017,17(9):1234-1242. [8] LIU J J, WU H H, CHEN T H, et al. 15,16-dihydrotanshinone I from the functional food salvia miltiorrhiza exhibits anticancer activity in human hl-60 leukemia cells: In vitro and in vivo studies[J]. Int J Mol Sci, 2015,16(8):19387-19400. [9] CAI Y, LV F, KALDYBAYEVA N, et al. 15, 16-dihydrotanshinone i inhibits hemangiomas through inducing pro-apoptotic and anti-angiogenic mechanisms in vitro and in vivo[J]. Front Pharmacol,2018(9):25. [10] KUMAR V, RADIN D, LEONARDI D. Probing the oncolytic and chemosensitizing effects of dihydrotanshinone in an in vitro glioblastoma model[J]. Anticancer Res, 2017,37(11):6025-6030. [11] WANG F, MA J, WANG K S, et al. Blockade of tnf-alpha-induced nf-kappab signaling pathway and anti-cancer therapeutic response of dihydrotanshinone I[J]. Int Immunopharmacol, 2015,28(1):764-772. [12] HONG J Y, PARK S H, PARK H J, et al. Anti-proliferative effect of 15,16-dihydrotanshinone i through cell cycle arrest and the regulation of amp-activated protein kinase/akt/mtor and mitogen-activated protein kinase signaling pathway in human hepatocellular carcinoma cells[J]. J Cancer Prev,2018,23(2):63-69. [13] CAO Y, HUANG B, GAO C. Salvia miltiorrhiza extract dihydrotanshinone induces apoptosis and inhibits proliferation of glioma cells[J]. Bosn J Basic Med Sci, 2017,17(3):235-240. [14] FENG C, SHE J, CHEN X, et al. Exosomal mir-196 a-1 promotes gastric cancer cell invasion and metastasis by targeting sfrp1[J]. Nanomed(Lond), 2019,14(10): 2579-2593. [15] DAT N T, JIN X, LEE J H, et al. Abietane diterpenes from salvia miltiorrhiza inhibit the activation of hypoxia-inducible factor-1[J]. J Nat Prod, 2007,70(7):1093-1097. [16] TAO L, XU M, DAI X, et al. Polypharmacological profiles underlying the antitumor property of salvia miltiorrhiza root(danshen) interfering with nox-dependent neutrophil extracellular traps[J]. Oxid Med Cell Longev, 2018,2018:4908328. [17] TEJERO J, SHIVA S, GLADWIN M T. Sources of vascular nitric oxide and reactive oxygen species and their regulation[J]. Physiol Rev, 2019,99(1):311-379. [18] LO A C, WOO T T, WONG R L, et al. Apoptosis and other cell death mechanisms after retinal detachment: implications for photoreceptor rescue[J]. Ophthalmologica, 2011(226) Suppl 1:10-17. [19] 李王平, 马李杰, 潘蕾, 等. 白藜芦醇诱导小细胞肺癌h446细胞凋亡机制的研究[J]. 中华肺部疾病杂志(电子版), 2019,12(1):15-23. [20] 刘佳, 胡桃红, 袁敏, 等. 微小RNA调控血管内皮细胞凋亡机制的研究进展[J]. 解放军医学院学报, 2018,39(9):826-829. [21] HELLWIG-BURGEL T, STIEHL D P, WAGNER A E, et al. Review: Hypoxia-inducible factor-1(hif-1): a novel transcription factor in immune reactions[J]. J Interferon Cytokine Res, 2005,25(6):297-310. [22] JIANG L, ZENG H, NI L, et al. Hif-1 alpha preconditioning potentiates antioxidant activity in ischemic injury: The role of sequential administration of dihydrotanshinone I and protocatechuic aldehyde in cardioprotection[J]. Antioxid Redox Signal, 2019,31(3):227-242. [23] PEZZUTO A, CARICO E. Role of hif-1 in cancer progression: novel insights. A review[J]. Curr Mol Med, 2018,18(6):343-351. [24] ZHU C, ZHU Q, WANG C, et al. Hostile takeover: manipulation of hif-1 signaling in pathogen-associated cancers(review)[J]. Int J Oncol, 2016,49(4):1269-1276. [25] VRIEND J, REITER R J. Melatonin and the von hippel-lindau/hif-1 oxygen sensing mechanism: A review[J]. Biochim Biophys Acta, 2016,1865(2):176-183. [26] JEOUNG N H. Pyruvate dehydrogenase kinases: therapeutic targets for diabetes and cancers[J]. Diabetes Metab J,2015,39(3):188-197. [27] MARGARITELIS N V, VESKOUKIS A S, PASCHALIS V, et al. Blood reflects tissue oxidative stress: a systematic review[J]. Biomarkers, 2015,20(2):97-108. [28] 陈嘉兴, 陈智健, 吴礼康, 等. 镉对职业接触者肾功能、氧化应激与nrf2转录因子表达水平的影响[J]. 华中科技大学学报(医学版), 2018,47(6):679-683. [29] 赵海格. 转录因子nrf2在失血性休克中的保护作用及其机制研究[D]. 浙江大学, 2017. [30] ARMSTRONG J S, STEINAUER K K, HORNUNG B, et al. Role of glutathione depletion and reactive oxygen species generation in apoptotic signaling in a human b lymphoma cell line[J]. Cell Death Differ, 2002,9(3):252-263. [31] VENUGOPAL R, JAISWAL A K. Nrf1 and nrf2 positively and c-fos and fra1 negatively regulate the human antioxidant response element-mediated expression of nad(p)h:Quinone oxidoreductase1 gene[J]. Proc Natl Acad Sci USA, 1996,93(25):14960-14965. [32] ABDO S, ZHANG S L, CHAN J S. Reactive oxygen species and nuclear factor erythroid 2-related factor 2 activation in diabetic nephropathy: a hidden target[J]. J Diabetes Metab, 2015,6(6):1-12. |