[1] BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6):394-424. [2] KEUM N, GIOVANNUCCI E. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(12):713-732. [3] FENG R M, ZONG Y N, CAO S M, et al. Current cancer situation in China: good or bad news from the 2018 Global Cancer Statistics?[J]. Cancer Commun, 2019, 39(1):22. [4] DREW D A, CAO Y, CHAN A T. Aspirin and colorectal cancer: the promise of precision chemoprevention[J]. Nat Rev Cancer, 2016, 16(3):173-186. [5] KATONA B W, WEISS J M. Chemoprevention of colorectal cancer[J]. Gastroenterology, 2020, 158(2):368-388. [6] BARON J A, COLE B F, SANDLER R S, et al. A randomized trial of aspirin to prevent colorectal adenomas[J]. N Engl J Med, 2003, 348(10):891-899. [7] BENAMOUZIG R, UZZAN B, DEYRA J, et al. Prevention by daily soluble aspirin of colorectal adenoma recurrence: 4-year results of the APACC randomised trial[J]. Gut, 2012, 61(2):255-261. [8] SANDLER R S, HALABI S, BARON J A, et al. A Randomized trial of aspirin to prevent colorectal adenomas in patients with previous[J]. N Engl J Med, 2003,348(10):883-890. [9] CHUBAK J, WHITLOCK E P, WILLIAMS S B, et al. Aspirin for the prevention of cancer incidence and mortality: systematic evidence reviews for the U.S. Preventive Services Task Force[J]. Ann Int Med, 2016, 164(12):814. [10] TADANOBU S, SHUSUKE T, KOMAROVA N L, et al. A comprehensive in vivo and mathematic modeling-based kinetic characterization for aspirin-induced chemoprevention in colorectal cancer[J]. Carcinogenesis, 2020, 41(6):751-760. [11] BIBBINS-DOMINGO K. Aspirin use for the primary prevention of cardiovascular disease and colorectal cancer: U.S. Preventive Services Task Force commendation statement[J]. Ann Int Med, 2016, 164(12): 836-845. [12] PATRIGNANI P, SACCO A, SOSTRES C, et al. Low-dose aspirin acetylates cyclooxygenase-1 in human colorectal mucosa: implications for the chemoprevention of colorectal cancer[J]. Clin Pharmacol Ther, 2017, 102(1):52-61. [13] RANGER S, GURPREET. Therole of aspirin in colorectal cancer chemoprevention[J]. Crit Rev Oncol Hemat, 2016(104):87-90. [14] GOEL A, CHANG D K, RICCIARDIELLO L, et al. A novel mechanism for aspirin-mediated growth inhibition of human colon cancer cells[J]. Clin Cancer Res, 2003, 9(1):383-390. [15] GONG L, ZHANG D, DONG Y, et al. Integratedbioinformatics analysis for identificating the therapeutic targets of aspirin in small cell lung cancer[J]. J Biomed Inform, 2018(88):20-28. [16] LIU Y, LIANG Y, WISHART D. PolySearch2: a significantly improved text-mining system for discovering associations between human diseases, genes, drugs, metabolites, toxins and more[J]. Nucleic Acids Res, 2015, 43(W1):W535-W542. [17] SZKLARCZYK D, MORRIS J H, COOK H, et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible[J]. Nucleic Acids Res, 2017, 45(D1):D362-D368. [18] SHANNON P, MARKIEL A, OZIER O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks[J]. Genome Res, 2003, 13(11):2498-2504. [19] CERAMI E, GAO J, DOGRUSOZ U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data[J]. Cancer Discov, 2012, 2(5):401-404. [20] GAO J, AKSOY B A, DOGRUSOZ U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal[J]. Sci Signal, 2013, 6(269):pl1. [21] HONG Y, DOWNEY T, EU K W, et al. A ‘metastasis-prone’ signature for early-stage mismatch-repair proficient sporadic colorectal cancer patients and its implications for possible therapeutics[J]. Clin Exp Metastasis, 2010, 27(2):83-90. [22] TSUKAMOTO S, ISHIKAWA T, IIDA S, et al. Clinical significance ofosteoprotegerin expression in human colorectal cancer[J]. Clin Cancer Res, 2011, 17(8):2444-2450. [23] KHAMAS A, ISHIKAWA T, SHIMOKAWA K, et al. Screening for epigenetically masked genes in colorectal cancer using 5-Aza-2′-deoxycytidine, microarray and gene expression profile[J]. Cancer Genomics Proteomics, 2012, 9(2):67-75. [24] IWAYA T, YOKOBORI T, NISHIDA N, et al. Downregulation of miR-144 is associated with colorectal cancer progression via activation of mTOR signaling pathway[J]. Carcinogenesis, 2012, 33(12):2391-2397. [25] TANG Z, LI C, KANG B, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses[J]. Nucleic Acids Res, 2017, 45(W1):W98-W102. [26] GIANNAKIS M, MU X J, SHUKLA S A, et al. Genomiccorrelates of immune-cell infiltrates in colorectal carcinoma[J]. Cell Rep, 2016, 15(4):857-865. [27] SESHAGIRI S, STAWISKI E W, DURINCK S, et al. Recurrent R-spondin fusions in colon cancer[J]. Nature, 2012, 488(7413):660-664. [28] SUNG W W, LIN Y M, WU P R, et al. High nuclear/cytoplasmic ratio of Cdk1 expression predicts poor prognosis in colorectal cancer patients[J]. BMC Cancer, 2014, 14(1):951. [29] YANG J, XU W W, HONG P, et al. Adefovir dipivoxil sensitizes colon cancer cells to vemurafenib by disrupting the KCTD12-CDK1 interaction[J]. Cancer Lett, 2019(451):79-91. [30] DACHINENI R, KUMAR D R, CALLEGARI E, et al. Salicylic acid metabolites and derivatives inhibit CDK activity: Novel insights into aspirin's chemopreventive effects against colorectal cancer[J]. Int J Oncol, 2017, 51(6):1661-1673. [31] SILLARS-HARDEBOL A H, CARVALHO B, TIJSSEN M, et al. TPX2 and AURKA promote 20q amplicon-driven colorectal adenoma to carcinoma progression[J]. Gut, 2012, 61(11):1568-1575. [32]TAKAHASHI Y, SHERIDAN P, NIIDA A, et al. The AURKA/TPX2 axis drives colon tumorigenesis cooperatively with MYC[J].Ann Oncol, 2015, 26(5):935-942. [33] AN B C, HONG S, PARK H J, et al. Anti-colorectal cancer effects of probiotic-derived p8 protein[J]. Genes (Basel), 2019, 10(8):624. [34] ANJOMSHOA A A, LIN Y H, BLACK M A, et al. Reduced expression of a gene proliferation signature is associated with enhanced malignancy in colon cancer[J]. Br J Cancer, 2008, 99(6):966-973. [35] LI Y, LI L, CHEN M, et al. MAD2L2 inhibits colorectal cancer growth by promoting NCOA3 ubiquitination and degradation[J]. Mol Oncol, 2018, 12(3):391-405. [36] ZHONG R, CHEN X, CHEN X, et al. MAD1L1 Arg558His and MAD2L1 Leu84Met interaction with smoking increase the risk of colorectal cancer[J]. Scientific Reports, 2015 (5):12202. [37] CHEN X, SUN Y Z, ZHANG D H, et al. NRDTD: a database for clinically or experimentally supported non-coding RNAs and drug targets associations[J]. Database (Oxford), 2017(2017):bax057. |