广州医药 ›› 2025, Vol. 56 ›› Issue (11): 1501-1510.DOI: 10.20223/j.cnki.1000-8535.2025.11.005

• 论著 • 上一篇    下一篇

基于机器学习的脓毒症谵妄患者死亡预测模型的构建与评估

黄毅文1, 胡北2   

  1. 1 汕头大学医学院(广东汕头 515041)
    2 南方医科大学附属广东省人民医院(广东省医学科学院)急诊科(广东广州 510080)
  • 收稿日期:2025-01-10 出版日期:2025-11-20 发布日期:2025-12-25
  • 通讯作者: 胡北,E-mail:wymanhuang@qq.com

Machine learning prediction model for sepsis-associated delirium mortality

HUANG Yiwen1, HU Bei2   

  1. 1 Medical College,Shantou University,Shantou 515041,China
    2 Emergency Department,Guangdong Provincial People’s Hospital(Guangdong Academy of Medical Sciences),Southern Medical University,Guangzhou 510080,China
  • Received:2025-01-10 Online:2025-11-20 Published:2025-12-25

摘要: 目的 通过机器学习方法构建脓毒症谵妄患者30 d死亡的预测模型,并识别关键预测因子。方法 采用基于医疗信息集成重症监护数据库(Medical Information Mart for Intensive Care IV)的回顾性队列研究方法,boruta筛选重要特征,并通过决策树,K近邻,LightGBM,随机森林,支持向量机,XGBoost构建模型进行分析,通过ROC曲线下面积进行评估,利用F1分数、召回率、精确率、特异度、灵敏度和阳性预测值比较模型表现。结果 XGBoost模型在训练集和验证集中的ROC曲线下面积分别为0.906和0.762,表明该模型具有良好的预测能力,入院年龄、红细胞分布宽度和白细胞计数是最重要的预测因子。结论 基于机器学习的脓毒症谵妄患者预后预测模型展现出良好的预测效能,为临床早期干预提供了重要参考依据。

关键词: 脓毒症, 谵妄, 机器学习, 死亡

Abstract: Objective To construct a 30-day mortality prediction model for patients with sepsis-associated delirium using machine learning methods and identify key predictive factors.Methods A retrospective cohort study was conducted based on the Medical Information Mart for Intensive Care IV database.Important features were selected using the Boruta algorithm,and models including Decision Tree,K-Nearest Neighbors,LightGBM,Random Forest,Support Vector Machine,and XGBoost were constructed and analyzed.Model performance was evaluated using the area under the reciver operater characteristic(ROC) curve(AUC),along with F1 score,recall,precision,specificity,sensitivity,and positive predictive value.Results The XGBoost model demonstrated strong predictive performance,with AUC values of 0.906 in the training set and 0.762 in the test set.Key predictors identified included admission age,red blood cell distribution width,and white blood cell count.Conclusions The machine learning-based prediction model for sepsis-associated delirium prognosis exhibits robust predictive efficacy,providing a valuable tool for early clinical intervention.

Key words: sepsis, delirium, machine learning, mortality