[1] 石丽娜,朱庆丽,荣根满,等.脑卒中后抑郁的发病率与临床特点[J].中外医学研究,2012(13):103. [2] MAN S C,HUNG B H B,NG R M K,et al.A pilot controlled trial of a combination of dense cranial electroacupuncture stimulation and body acupuncture for post-stroke depression[J].BMC Complement Altern Med,2014,14:255. [3] 赵欢,牟君.卒中后抑郁与肠道微生物的相关性分析[J].临床医学进展,2023,13(7):10663-10668. [4] LIANG S,WU X,HU X,et al.Recognizing depression from the Microbiota-Gut-Brain axis[J].Int J Mol Sci,2018,19(6):1592. [5] DU Y,GAO X R,PENG L,et al.Crosstalk between the microbiota-gut-brain axis and depression[J].Heliyon,2020,6(6):e04097. [6] VALLES-COLOMER M,FALONY G,DARZI Y,et al.The neuroactive potential of the human gut microbiota in quality of life and depression[J]. Nat Microbiol,2019,4(4):623-632. [7] BARANDOUZI Z A,STARKWEATHER A R,HENDERSON W A,et al.Altered composition of gut microbiota in depression:A systematic review[J].Front Psychiatry,2020(11):541. [8] 秦利华,马娟娟,马玲玲,等.卒中后抑郁症患者肠道菌群的多样性分析[J].医药论坛杂志,2022,43(17):64-67. [9] 范文涛,闫咏梅,别玉龙,等.脑卒中后抑郁症患者肠道菌群的多样性分析[J].南方医科大学学报,2016,36(10):1305-1311. [10] 郭旭东,李延红,翟珍惜.脑卒中后抑郁症患者粪便微生物种群多样性和均衡性分析[J].中国微生态学杂志,2022,34(6):685-689. [11] CAPORASO J G,KUCZYNSKI J,STOMBAUGH J,et al.QIIME allows analysis of high-throughput community sequencing data[J].Nat Methods,2010,7(5):335-336. [12] QUAST C,PRUESSE E,YILMAZ P,et al.The SILVA ribosomal RNA gene database project:Improved data processing and web-based tools[J].Nucleic Acids Res,2013,41(Database issue):D590-D596. [13] COLE J R,WANG Q,FISH J A,et al.Ribosomal Database Project:Data and tools for high throughput rRNA analysis[J].Nucl Acids Res,2014,42(D1):D633-D642. [14] LÜ J,GUO W,CHEN S,et al.Host plants influence the composition of the gut bacteria in Henosepilachna vigintioctopunctata[J].PLoS One,2019,14(10):e0224213. [15] 蒋海寅. 人类肠道微生物群落菌群多样性变化与抑郁症的相关性研究[D].杭州:浙江大学,2015. [16] de VOS W M,TILG H,van HUL M,et al.Gut microbiome and health:Mechanistic insights[J].Gut,2022,71(5):1020-1032. [17] 周志华. 机器学习[M].北京:清华大学出版社,2016:124-125. [18] 熊思伟,刘玉琳.基于Borderline-SMOTE算法与Stacking集成学习的前列腺肿瘤风险预测研究[J].现代肿瘤医学,2023,31(16):3075-3081. [19] 李英杰,王岩,贾艺林,等.基于Stacking集成学习的肾综合征出血热发病数据预测模型研究[J].中国卫生统计,2022,39(6):811-814. [20] 张培文. 基于stacking融合模型的脂肪肝致病影响因素的筛选分析[D].重庆:重庆大学,2022. [21] 孙仕亮,赵静.模式识别与机器学习[M].北京:清华大学出版社,2020:89. [22] 冯金周,刘发健,江华.颅脑损伤患者临床死亡预测:一项基于机器学习的主成分分析-逻辑回归模型[J].临床神经外科杂志,2019,16(2):99-103. [23] 李玉莹,张景肖.成分数据的logistic回归模型研究[J].数理统计与管理,2019,38(3):442-449. [24] 克劳斯·巴克豪斯,本德·埃里克森,伍尔夫·普林克,等.多元统计分析方法用SPSS工具[M].2版.上海:格致出版社,2017:200-201. [25] 周洁,胡凌娟,怀晴雨.基于主成分分析和TOPSIS模型的我国各省份医疗水平评价研究[J].中国全科医学,2023,26(34):4254-4260,4268. [26] 陈丽萍,韩棉梅,傅思媚.电针联合重复经颅磁刺激治疗脑卒中后抑郁伴失眠的临床研究[J].广州医药,2021,52(2):6-10. |