[1] 刘静,李敏,潘亚雯,等.2型糖尿病合并骨质疏松的药物治疗进展[J].广州医药,2025,56(3):316-322. [2] PINTO D,ALSHAHRANI M,CHAPURLAT R,et al.The global approach to rehabilitation following an osteoporotic fragility fracture:A review ofthe rehabilitation working group of the International Osteoporosis Foundation(IOF)committee of scientific advisors[J].Osteoporos Int,2022,33(3):527-540. [3] KHAN A Z,RAMES R D,MILLER A N.Clinical management of osteoporotic fractures[J].Curr Osteoporos Rep,2018,16(3):299-311. [4] CHINDAMO G,SAPINO S,PEIRA E,et al.Bone diseases:Current approach and future perspectives in drug delivery systems for bone targeted therapeutics[J].Nanomaterials,2020,10(5):875. [5] LIANG B,BURLEY G,LIN S,et al.Osteoporosis pathogenesis and treatment:Existing and emerging avenues[J].Cell Mol Biol Lett,2022,27(1):72. [6] PATRA J K,DAS G,FRACETO L F,et al.Nano based drug delivery systems:Recent developments and future prospects[J].J Nanobiotechnology,2018,16(1):71. [7] ELMOWAFY M,SHALABY K,ELKOMY M H,et al.Polymeric nanoparticles for delivery of natural bioactive agents:Recent advances and challenges[J].Polymers,2023,15(5):1123. [8] WANG J,WU C,WANG Y,et al.Nano-enabled regulation of DNA damage in tumor cells to enhance neoantigen-based pancreatic cancer immunotherapy[J].Biomaterials,2024(311):122710. [9] 贾翠萍,张媛,邓伟豪.血小板药物递送系统的研究进展[J].广州医药,2024,55(6):577-584. [10] 陈明娃,王俊侠.纳米药物重编程肿瘤相关巨噬细胞增强抗癌效果[J].广州医药,2023,54(4):1-13. [11] BALLA E,DANIILIDIS V,KARLIOTI G,et al.Poly(lactic acid):A versatile biobased polymer for the future with multifunctional properties-from monomer synthesis,polymerization techniques and molecular weight increase to PLA applications[J].Polymers,2021,13(11):1822. [12] CHEN T,ZHAO X,WENG Y.Self-assembled polylactic acid(PLA):Synthesis,properties and biomedical applications[J].Front Chem,2022(10):1107620. [13] DUARTE A,MARIANA D,BEATRIZ T,et al.Optimized synthesis of poly(lactic acid)nanoparticles for the encapsulation of flutamide[J].Gels,2024,10(4):274. [14] BIKIARIS N D,KOUMENTAKOU I,SAMIOTAKI C,et al.Recent advances in the investigation of poly(lactic acid)(PLA)nanocomposites:Incorporation of various nanofillers and their properties and applications[J].Polymers,2023,15(5):1196. [15] ELAHMER N R,WONG S K,MOHAMED N,et al.Mechanistic insights and therapeutic strategies in osteoporosis:A comprehensive review[J].Biomedicines,2024,12(8):1635. [16] ANISH R J,NAIR A.Osteoporosis management-current and future perspectives-A systemic review[J].J Orthop,2024(53):101-113. [17] MUNIYASAMY R,MANJUBALA I.Insights into the mechanism of osteoporosis and the available treatment options[J].Curr Pharm Biotechnol,2024,25(12):1538-1551. [18] HEWITT C,FARAH C S.Bisphosphonate-related osteonecrosis of the jaws:A comprehensive review[J].J Oral Pathology Medicine,2007,36(6):319-328. [19] DIEL I J,BERGNER R,GRÖTZ K A.Adverse effects of bisphosphonates:Current issues[J].J Support Oncol,2007,5(10):475-482. [20] MOHAMMADZADEH M,ZAREI M,ABBASI H,et al.Promoting osteogenesis and bone regeneration employing icariin-loaded nanoplatforms[J].J Biol Eng,2024,18(1):29. [21] SEYEDI Z,AMIRI M S,MOHAMMADZADEH V,et al.Icariin:A promising natural product in biomedicine and tissue engineering[J].J Funct Biomater,2023,14(1):44. [22] SHI G,YANG C,WANG Q,et al.Traditional Chinese medicine compound-loaded materials in bone regeneration[J].Front Bioeng Biotechnol,2022(10):851561. [23] WANG Y,HAN Y,ZHU H,et al.A systematic review of the botany,traditional uses,phytochemistry and pharmacology of Epimedium[J].Phytochem Rev,2025,24(5):4125-4158. [24] LU L.Epimedium active component icaritin enhances bone mass through regulating the coupling of bone formation and resorption mediated by distinct signaling targets | CUHK Digital Repository[EB/OL].[2025-08-14].https://repository.lib.cuhk.edu.hk/en/item/cuhk-1292649. [25] YANG A,YU C,LU Q,et al.Mechanism of action of icariin in bone marrow mesenchymal stem cells[J].Stem Cells Int,2019(2019):5747298. [26] LI M,ZHANG N D,WANG Y,et al.Coordinate regulatory osteogenesis effects of icariin,timosaponin B II and ferulic acid from traditional Chinese medicine formulas on UMR-106 osteoblastic cells and osteoblasts in neonatal rat calvaria cultures[J].J Ethnopharmacol,2016(185):120-131. [27] GAO W,ZHANG L.Engineering red-blood-cell-membrane-coated nanoparticles for broad biomedical applications[J].AlChE J,2015,61(3):738-746. [28] NGUYEN P H D,JAYASINGHE M K,LE A H,et al.Advances in drug delivery systems based on red blood cells and their membrane-derived nanoparticles[J].ACS Nano,2023,17(6):5187-5210. [29] CHEN Y,ZHU M,HUANG B,et al.Advances in cell membrane-coated nanoparticles and their applications for bone therapy[J].Biomater Adv,2023(144):213232. [30] JING C,LI B,TAN H,et al.Alendronate-decorated nanoparticles as bone-targeted alendronate carriers for potential osteoporosis treatment[J].ACS Appl Bio Mater,2021,4(6):4907-4916. [31] RYU T K,KANG R H,JEONG K Y,et al.Bone-targeted delivery of nanodiamond-based drug carriers conjugated with alendronate for potential osteoporosis treatment[J].J Control Release,2016(232):152-160. [32] SARAN U,GEMINI PIPERNI S,CHATTERJEE S.Role of angiogenesis in bone repair[J].Arch Biochem Biophys,2014(561):109-117. [33] GROSSO A,BURGER M G,LUNGER A,et al.It takes two to tango:Coupling of angiogenesis and osteogenesis for bone regeneration[J].Front Bioeng Biotechnol,2017(5):68. [34] HUANG J,HAN Q,CAI M,et al.Effect of angiogenesis in bone tissue engineering[J].Ann Biomed Eng,2022,50(8):898-913. |