[1] World Health Organization. 2020 antibacterial agents in clinical and preclinical development: an overview and analysis[R]. WHO,2021.
[2] HUANG X H, SUN N, ZHONG D X, et al. A review on bacterial cell division protein and recent progress of FtsZ inhibitors development[J]. Prog Biochem Biophys, 2020, 47(9): 935-955.
[3] CASIRAGHI A, SUIGO L, VALOTI E, et al. Targeting bacterial cell division: A binding site-centered approach to the most promising inhibitors of the essential protein FtsZ[J]. Antibiotics, 2020, 9(2): 69.
[4] HAYDON D J, STOKES N R, URE R, et al. An inhibitor of FtsZ with potent and selective anti-staphylococcal activity[J]. Science, 2008, 321(5896): 1673-1675.
[5] ANDREU J M, HUECAS S, ARAÚJO-BAZÁN L, et al. The search for antibacterial inhibitors targeting cell division protein FtsZ at its nucleotide and allosteric binding sites[J]. Biomedicines, 2022, 10(8): 1825.
[6] RUIZ F M, HUECAS S, SANTOS-ALEDO A, et al. FtsZ filament structures in different nucleotide states reveal the mechanism of assembly dynamics[J]. PLoS Biol, 2022, 20(3): e3001497.
[7] BARROWS J M, GOLEY E D. FtsZ dynamics in bacterial division: What, how, and why?[J]. Curr Opin Cell Biol, 2021(68): 163-172.
[8] DOMADIA P N, BHUNIA A, SIVARAMAN J, et al. Berberine targets assembly of Escherichia coli cell division protein FtsZ[J]. Biochemistry, 2008, 47(10): 3225-3234.
[9] SUN N, CHAN F Y, LU Y J, et al. Rational design of berberine-based FtsZ inhibitors with broad-spectrum antibacterial activity[J]. PloS One, 2014, 9(5): e97514.
[10] DOMADIA P, SWARUP S, BHUNIA A, et al. Inhibition of bacterial cell division protein FtsZ by cinnamaldehyde[J]. Biochem Pharmacol, 2007, 74(6): 831-840.
[11] LI X, SHENG J, HUANG G, et al. Design, synthesis and antibacterial activity of cinnamaldehyde derivatives as inhibitors of the bacterial cell division protein FtsZ[J]. Eur J Med Chem, 2015(97): 32-41.
[12] PLAZA A, KEFFER J L, BIFULCO G, et al. Chrysophaentins A—H, antibacterial bisdiarylbutene macrocycles that inhibit the bacterial cell division protein FtsZ[J]. J Am Chem Soc, 2010, 132(26): 9069-9077.
[13] KEFFER J L, HUECAS S, HAMMILL J T, et al. Chrysophaentins are competitive inhibitors of FtsZ and inhibit Z-ring formation in live bacteria[J]. Bioorg Med Chem, 2013, 21(18): 5673-5678.
[14] WANG J, GALGOCI A, KODALI S, et al. Discovery of a small molecule that inhibits cell division by blocking FtsZ, a novel therapeutic target of antibiotics[J]. J Biol Chem, 2003, 278(45): 44424-44428.
[15] OHASHI Y, CHIJIIWA Y, SUZUKI K, et al. The lethal effect of a benzamide derivative, 3-methoxybenzamide, can be suppressed by mutations within a cell division gene, ftsZ, in Bacillus subtilis[J]. J Bacteriol, 1999, 181(4): 1348-1351.
[16] ANDREU J M, SCHAFFNER-BARBERO C, HUECAS S, et al. The antibacterial cell division inhibitor PC190723 is an FtsZ polymer-stabilizing agent that induces filament assembly and condensation[J]. J Biol Chem, 2010, 285(19): 14239-14246.
[17] ELSEN N L, LU J, PARTHASARATHY G, et al. Mechanism of action of the cell-division inhibitor PC190723: modulation of FtsZ assembly cooperativity[J]. J Am Chem Soc, 2012, 134(30): 12342-12345.
[18] KAUL M, MARK L, ZHANG Y, et al. TXA709, an FtsZ-targeting benzamide prodrug with improved pharmacokinetics and enhanced in vivo efficacy against methicillin-resistant Staphylococcus aureus[J]. Antimicrob Agents Chemother, 2015, 59(8): 4845-4855.
[19] RUIZ-AVILA L B, HUECAS S, ARTOLA M, et al. Synthetic inhibitors of bacterial cell division targeting the GTP-binding site of FtsZ[J]. ACS Chem Biol, 2013, 8(9): 2072-2083.
[20] ARTOLA M, RUIZ-AVILA L B, VERGOÑÓS A, et al. Effective GTP-replacing FtsZ inhibitors and antibacterial mechanism of action[J]. ACS Chem Biol, 2015, 10(3): 834-843.
[21] CHAN F Y, SUN N, NEVES M A C, et al. Identification of a new class of FtsZ inhibitors by structure-based design and in vitro screening[J]. J Chem Inf Model, 2013, 53(8): 2131-2140.
[22] CHAN F Y, SUN N, LEUNG Y C, et al. Antimicrobial activity of a quinuclidine-based FtsZ inhibitor and its synergistic potential with β-lactam antibiotics[J]. J Antibiot (Tokyo), 2015, 68(4): 253-258.
[23] CHAN K F, SUN N, YAN S C, et al. Efficient synthesis of amine-linked 2, 4, 6-trisubstituted pyrimidines as a new class of bacterial FtsZ inhibitors[J]. ACS Omega, 2017, 2(10): 7281-7292.
[24] KELLEY C, ZHANG Y, PARHI A, et al. 3-Phenyl substituted 6, 7-dimethoxyisoquinoline derivatives as FtsZ-targeting antibacterial agents[J]. Bioorg Med Chem, 2012, 20(24): 7012-7029.
[25] SUN N, DU R L, ZHENG Y Y, et al. Antibacterial activity of N-methylbenzofuro[3, 2-b] quinoline and N-methylbenzoindolo[3, 2-b]-quinoline derivatives and study of their mode of action[J]. Eur J Med Chem, 2017(135): 1-11.
[26] SUN N, LU Y J, CHAN F Y, et al. A thiazole orange derivative targeting the bacterial protein FtsZ shows potent antibacterial activity[J]. Front Microbiol, 2017(8): 855.
[27] RAY S, DHAKED H P S, PANDA D. Antimicrobial peptide CRAMP (16–33) stalls bacterial cytokinesis by inhibiting FtsZ assembly[J]. Biochemistry, 2014, 53(41): 6426-6429.
[28] PIERACCINI S, RENDINE S, JOBICHEN C, et al. Computer aided design of FtsZ targeting oligopeptides[J]. RSC Adv, 2013, 3(6): 1739-1743. |