[1] MULLIGAN M J, LYKE K E, KITCHIN N, et al. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults[J]. Nature, 2020, 586(7830): 589-593. [2] SHANG L, NIENHAUS K, NIENHAUS G U. Engineered nanoparticles interacting with cells: size matters[J]. J Nanobiotechnol, 2014(12): 5. [3] LEE E S, GAO Z G, BAE Y H. Recent progress in tumor pH targeting nanotechnology[J]. J Control Release, 2008, 132(3): 164-170. [4] YOO J W, IRVINE D J, DISCHER D E, et al. Bio-inspired, bioengineered and biomimetic drug delivery carriers[J]. Nat Rev Drug Discov, 2011, 10(7): 521-535. [5] DU B J, YU M X, ZHENG J. Transport and interactions of nanoparticles in the kidneys[J]. Nat Rev Mater, 2018, 3(10): 358-374. [6] CHOI H S, LIU W, MISRA P, et al. Renal clearance of quantum dots[J]. Nat Biotechnol, 2007, 25(10): 1165-1170. [7] BURNS A A, VIDER J, OW H, et al. Fluorescent silica nanoparticles with efficient urinary excretion for nanomedicine[J]. Nano Lett, 2009, 9(1): 442-448. [8] DU B J, JIANG X Y, DAS A, et al. Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime[J]. Nat Nanotechnol, 2017, 12(11): 1096-1102. [9] ZHANG S L, GAO H J, BAO G. Physical principles of nanoparticle cellular endocytosis[J]. Acs Nano, 2015, 9(9): 8655-8671. [10] YU M X, LIU J B, NING X H, et al. High-contrast noninvasive imaging of kidney clearance kinetics enabled by renal clearable nanofluorophores[J]. Angew Chem Int Ed, 2015, 54(51): 15434-15438. [11] JIANG X Y, DU B J, TANG S H, et al. Photoacoustic imaging of nanoparticle transport in the kidneys at high temporal resolution[J]. Angew Chem Int Ed, 2019, 58(18): 5994-6000. [12] HUANG J G, LI J C, LYU Y, et al. Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury[J]. Nat Mater, 2019, 18(10): 1133-1143. [13] CHENG P H, PU K Y. Molecular imaging and disease theranostics with renal-clearable optical agents[J]. Nat Rev Mater, 2021, 6(12): 1095-1113. [14] CHAWLA L S, KIMMEL P L. Acute kidney injury and chronic kidney disease: an integrated clinical syndrome[J]. Kidney Int, 2012, 82(5): 516-524. [15] ROMAGNANI P, REMUZZI G, GLASSOCK R, et al. Chronic kidney disease[J]. Nat Rev Dis Primers, 2017(3): 17088. [16] HOMMOS M S, GLASSOCK R J, RULE A D. Structural and functional changes in human kidneys with healthy aging[J]. J Am Soc Nephrol, 2017, 28(10): 2838-2844. [17] ECKARDT K U, CORESH J, DEVUYST O, et al. Evolving importance of kidney disease: from subspecialty to global health burden[J]. Lancet, 2013, 382(9887): 158-169. [18] LEVEY A S, BECKER C, INKER L A. Glomerular filtration rate and albuminuria for detection and staging of acute and chronic kidney disease in adults a systematic review[J]. JAMA-J Am Med Assoc, 2015, 313(8): 837-846. [19] HELAL I, FICK-BROSNAHAN G M, REED-GITOMER B, et al. Glomerular hyperfiltration: definitions, mechanisms and clinical implications[J]. Nat Rev Nephrol, 2012, 8(5): 293-300. [20] DENIC A, MATHEW J, LERMAN L O, et al. Single-nephron glomerular filtration rate in healthy adults[J]. N Engl J Med, 2017, 376(24): 2349-2357. [21] DENIC A, LIESKE J C, CHAKKERA H A, et al. The substantial loss of nephrons in healthy human kidneys with aging[J]. J Am Soc Nephrol, 2017, 28(1): 313-320. [22] TONNEIJCK L, MUSKIET M H A, SMITS M M, et al. Glomerular hyperfiltration in diabetes: mechanisms, clinical significance, and treatment[J]. J Am Soc Nephrol, 2017, 28(4): 1023-1039. [23] DAEHN I S, DUFFIELD J S. The glomerular filtration barrier: a structural target for novel kidney therapies[J]. Nat Rev Drug Discov, 2021, 20(10): 770-788. [24] LASAGNI L, ANGELOTTI M L, RONCONI E, et al. Podocyte regeneration driven by renal progenitors determines glomerular disease remission and can be pharmacologically enhanced[J]. Stem Cell Rep, 2015, 5(2): 248-263. [25] LEVEY A S, INKER L A. Assessment of glomerular filtration rate in health and disease: A state of the art review[J]. Clin Pharmacol Ther, 2017, 102(3): 405-419. [26] VALLON V, THOMSON S C. The tubular hypothesis of nephron filtration and diabetic kidney disease[J]. Nat Rev Nephrol, 2020, 16(6): 317-336. [27] WANG X, ZHONG X, LI J, et al. Inorganic nanomaterials with rapid clearance for biomedical applications[J]. Chem Soc Rev, 2021, 50(15): 8669-8742. [28] HIRN S, SEMMLER-BEHNKE M, SCHLEH C, et al. Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration[J]. Eur J Pharm Biopharm, 2011, 77(3): 407-416. [29] LIANG X, WANG H, ZHU Y, et al. Short- and long-term tracking of anionic ultrasmall nanoparticles in kidney[J]. ACS Nano, 2016, 10(1): 387-395. [30] LIU J, YU M, ZHOU C, et al. Renal clearable inorganic nanoparticles: a new frontier of bionanotechnology[J]. Mater Today, 2013, 16(12): 477-486. [31] YU M X, ZHOU C, LIU L, et al. Interactions of renal-clearable gold nanoparticles with tumor microenvironments: vasculature and acidity effects[J]. Angew Chem Int Ed, 2017, 56(15): 4314-4319. [32] NING X H, PENG C Q, LI E S, et al. Physiological stability and renal clearance of ultrasmall zwitterionic gold nanoparticles: Ligand length matters[J]. Apl Mater, 2017, 5(5). [33] RUGGIERO A, VILLA C H, BANDER E, et al. Paradoxical glomerular filtration of carbon nanotubes[J]. P Natl Acad Sci USA, 2010, 107(27): 12369-12374. [34] TANG S, PENG C, XU J, et al. Tailoring renal clearance and tumor targeting of ultrasmall metal nanoparticles with particle density[J]. Angew Chem Int Ed, 2016, 55(52): 16039-16043. [35] THOMPSON L E, JOY M S. Endogenous markers of kidney function and renal drug clearance processes of filtration, secretion, and reabsorption[J]. Curr Opin Toxicol, 2022, 31: 100344. [36] NAIR A V, KELIHER E J, CORE A B, et al. Characterizing the interactions of organic nanoparticles with renal epithelial cells in vivo[J]. ACS Nano, 2015, 9(4): 3641-3653. [37] LAWRENCE M G, ALTENBURG M K, SANFORD R, et al. Permeation of macromolecules into the renal glomerular basement membrane and capture by the tubules[J]. P Natl Acad Sci USA, 2017, 114(11): 2958-2963. [38] LOWENSTEIN J, GRANTHAM J J. The rebirth of interest in renal tubular function[J]. Am J Physiol Renal Physiol, 2016, 310(11): F1351-1355. [39] LEPIST E-I, ZHANG X, HAO J, et al. Contribution of the organic anion transporter OAT2 to the renal active tubular secretion of creatinine and mechanism for serum creatinine elevations caused by cobicistat[J]. Kidney Int, 2014, 86(2): 350-357. [40] LOWENSTEIN J, GRANTHAM J J. Residual renal function: a paradigm shift[J]. Kidney Int, 2017, 91(3): 561-565. [41] WILLIAMS R M, SHAH J, NG B D, et al. Mesoscale nanoparticles selectively target the renal proximal tubule epithelium[J]. Nano Lett, 2015, 15(4): 2358-2364. [42] ZHANG D, WEI C, HOP C E C A, et al. Intestinal excretion, intestinal recirculation, and renal tubule reabsorption are underappreciated mechanisms that drive the distribution and pharmacokinetic behavior of small molecule drugs[J]. J Med Chem, 2021, 64(11): 7045-7059. [43] CHERTOW G M, BURDICK E, HONOUR M, et al. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients[J]. J Am Soc Nephrol, 2005, 16(11): 3365-3370. [44] HOSTE E A J, KELLUM J A, SELBY N M, et al. Global epidemiology and outcomes of acute kidney injury[J]. Nat Rev Nephrol, 2018, 14(10): 607-625. [45] YU M, ZHOU J, DU B, et al. Noninvasive staging of kidney dysfunction enabled by renal-clearable luminescent gold nanoparticles[J]. Angew Chem Int Ed, 2016, 55(8): 2787-2791. [46] XU J, YU M, CARTER P, et al. In Vivo X-ray imaging of transport of renal clearable gold nanoparticles in the kidneys[J]. Angew Chem Int Ed, 2017, 56(43): 13356-13360. [47] SJEKAVICA I, NOVOSEL L, RUPČĆ M, et al. Radiological imaging in renal transplantation[J]. Acta Clin Croat, 2018, 57(4): 694-712. [48] HUANG H, HERNANDEZ R, GENG J, et al. A porphyrin-PEG polymer with rapid renal clearance[J]. Biomaterials, 2016, 76: 25-32. [49] BONVENTRE J V, VAIDYA V S, SCHMOUDER R, et al. Next-generation biomarkers for detecting kidney toxicity[J]. Nat Biotechnol, 2010, 28(5): 436-440. [50] HUANG J, LYU Y, LI J, et al. A renal-clearable duplex optical reporter for real-time imaging of contrast-induced acute kidney injury[J]. Angew Chem Int Ed, 2019, 58(49): 17796-17804. [51] CHENG P, PU K. Fluoro-photoacoustic polymeric renal reporter for real-time dual imaging of acute kidney injury[J]. Methods Enzymol, 2021(657): 271-300. [52] HASANOV E, YEBOA D N, TUCKER M D, et al. An interdisciplinary consensus on the management of brain metastases in patients with renal cell carcinoma[J]. CA-Cancer J Clin, 2022, 72(5): 454-489. [53] WANG H, YU D, FANG J, et al. Renal-clearable porphyrinic metal-organic framework nanodots for enhanced photodynamic therapy[J]. ACS Nano, 2019, 13(8): 9206-9217. [54] DU B, CHONG Y, JIANG X, et al. Hyperfluorescence imaging of kidney cancer enabled by renal secretion pathway dependent efflux transport[J]. Angew Chem Int Ed, 2021, 60(1): 351-359. [55] SHIN H, JEONG S, LEE Y, et al. H2O2-activatable antioxidant polymeric prodrug nanoparticles for the prevention of renal ischemia/reperfusion injury[J]. Biomacromolecules, 2022, 23(9): 3810-3821. |