[1] BEJAR R, LEVINE R, EBERT B L. Unraveling the molecular pathophysiology of myelodysplastic syndromes[J]. J Clin Oncol, 2011, 29(5): 504-515. [2] WALTER M J, SHEN D, DING L, et al. Clonal architecture of secondary acute myeloid leukemia[J].N Engl J Med, 2012, 366(12): 1090-1098. [3] PAPAEMMANUIL E, GERSTUNG M, MALCOVATI L, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes[J]. Blood, 2013, 122(22): 3616-3627. [4] HAFERLACH T, NAGATA Y, GROSSMANN V, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes[J]. Leukemia, 2014, 28(2): 241-247. [5] XU Y, LI Y, XU Q, et al. Implications of mutational spectrum in myelodysplastic syndromes based on targeted next-generation sequencing[J]. Oncotarget, 2017, 8(47): 82475-82490. [6] XU L, GU Z H, LI Y, et al. Genomic landscape of CD34(+) hematopoietic cells in myelodysplasticsyndrome and gene mutation profiles as prognostic markers[J]. Proc Natl Acad Sci U S A, 2014, 111(23): 8589-8594. [7] XU F, WU L Y, HE Q, et al. Exploration of the role of gene mutations in myelodysplasticsyndromes through a sequencing design involving a small number of target genes[J]. Sci Rep, 2017(7): 43113-43123. [8] LINDSLEY R C, MAR B G, MAZZOLA E, et al. Acute myeloid leukemia ontogeny is defined bydistinct somatic mutations[J]. Blood, 2015, 125(9): 1367-1376. [9] CARGO C A, ROWBOTHAM N, EVANS P A, et al. Targeted sequencing identifies patients with preclinical MDS at high risk of disease progression[J]. Blood, 2015, 126(21): 2362-2365. [10] TCGA NETWORK.Genomic and Epigenomic Landscapes of adult de novo acute myeloid leukemia[J]. N Engl J Med, 2013, 368(22): 2059-2074. [11] SHEN Y, ZHU Y M, FAN X, et al. Gene mutation patterns and their prognostic impact in a cohort of 1185 patients with acute myeloid leukemia[J]. Blood, 2011, 118(20): 5593-5603. [12] LIN P H, LI H Y, FAN S C, et al. A targeted next-generation sequencing in the molecular risk stratification of adult acute myeloid leukemia: implications for clinical practice[J]. Cancer Med, 2017, 6(2): 349-360. [13] ZHU Y M, WANG P P, HUANG J Y, et al. Gene mutational pattern and expression level in 560 acute myeloid leukemia patients and their clinical relevance[J]. J Transl Med, 2017, 15(1): 178-189. [14] ANDREIA de A, MEGGENDORFER M, WOLFGANG K, et al. Cytogenetic and molecular genetic shifts in 27 genes investigated by ngs depict specific routes from mds to s-aml in 38 patients with paired samples[J]. Blood Cancer J, 2014, 124(21): 2378-2380. [15] SHI H L, HUANG C, WANG P, et al. Acquisition of FLT3 or N-ras mutations is frequently associated with progression of myelodysplastic syndrome to acute myeloidleukemia[J]. Leukemia, 2004, 18(3): 466-475. [16] BACHER U, HAFERLACH C, ALPERMANN T, et al. Characterization of NPM1-mutated AML with a history of myelodysplastic syndromes or myeloproliferative neoplasms[J]. Leukemia, 2011, 25(4): 615-621. [17] JASEK M, GONDEK L P, BEJANYAN N, et al. TP53 mutations in myeloid malignancies are either homozygous or hemizygous due to copy number-neutral loss of heterozygosity or deletion of 17p[J]. Leukemia, 2010, 24(1): 216-219. [18] SHIH A, ABDEL-WAHAB O, PATEL J, et al. The role of mutations in epigenetic regulators in myeloid malignancies[J]. Nat Rev Cancer, 2012, 12(9): 599-612. [19] WALTER M, SHEN D, SHAO J, et al. Clonal diversity of recurrently mutated genes in myelodysplastic syndromes[J]. Leukemia, 2013, 27(6): 1275-1282. [20] EISFELD A, MRÓZEK K, KOHLSCHMIDT J, et al. The mutational oncoprint of recurrent cytogenetic abnormalities in adult patients with de novo acute myeloid leukemia[J]. Leukemia, 2017, 31(10): 2211-2218. [21] SPERLING A S, GIBSON C J, EBERT B L. The genetics of myelodysplastic syndrome: from clonal hematopoiesis to secondary leukemia[J]. Nat Rev Cancer, 2017, 17(1): 5-19. |