[1] KAPLAN G G,WINDSOR J W.The four epidemiological stages in the global evolution of inflammatory bowel disease[J].Nat Rev Gastroenterol Hepatol,2021,18(1):56-66. [2] XU L,HE B,SUN Y,et al.Incidence of inflammatory bowel disease in urban China:A nationwide population-based study[J].Clin Gastroenterol Hepatol,2023,21(13):3379-3386.e29. [3] PARK S H.Update on the epidemiology of inflammatory bowel disease in Asia:Where are we now?[J].Intest Res,2022,20(2):159-164. [4] HUGOT J P,CHAMAILLARD M,ZOUALI H,et al.Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease[J].Nature,2001,411(6837):599-603. [5] ANNESE V.Genetics and epigenetics of IBD.[J].Pharmacol Res,2020(159):104892. [6] LIU Z,LIU R,GAO H,et al.Genetic architecture of the inflammatory bowel diseases across East Asian and European ancestries.[J].Nat Genet,2023,55(5):796-806. [7] LO B,VESTER-ANDERSEN M K,VIND I,et al.Changes in disease behaviour and location in patients with Crohn's disease after seven years of follow-up:A Danish population-based inception cohort[J].J Crohns Colitis,2018,12(3):265-272. [8] ROGLER G,SINGH A,KAVANAUGH A,et al.Extraintestinal manifestations of inflammatory bowel disease:Current concepts,treatment,and implications for disease management[J].Gastroenterology,2021,161(4):1118-1132. [9] BONI C,SORIO C.Current views on the interplay between tyrosine kinases and phosphatases in chronic myeloid leukemia[J].Cancers,2021,13(10):2311. [10] JOSTINS L,RIPKE S,WEERSMA R K,et al.Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease[J].Nature,2012,491(7422):119-124. [11] SAZONOVS A,STEVENS C R,VENKATARAMAN G R,et al.Large-scale sequencing identifies multiple genes and rare variants associated with Crohn's disease susceptibility[J].Nat Genet,2022,54(9):1275-1283. [12] GAO J,ZHAO X,HU S,et al.Gut microbial DL-endopeptidase alleviates Crohn's disease via the NOD2 pathway[J].Cell Host Microbe,2022,30(10):1435-1449.e9. [13] HEGARTY L M,JONES G R,BAIN C C.Macrophages in intestinal homeostasis and inflammatory bowel disease[J].Nat Rev Gastroenterol Hepatol,2023,20(8):538-553. [14] NAYAR S,MORRISON J K,GIRI M,et al.A myeloid-stromal niche and gp130 rescue in NOD2-driven Crohn's disease[J].Nature,2021,593(7858):275-281. [15] EL HADAD J,SCHREINER P,VAVRICKA S R,et al.The genetics of inflammatory bowel disease[J].Mol Diagn Ther,2024,28(1):27-35. [16] SPALINGER M R,SAYOC-BECERRA A,SANTOS A N,et al.PTPN2 regulates interactions between macrophages and intestinal epithelial cells to promote intestinal barrier function[J].Gastroenterology,2020,159(5):1763-1777.e14. [17] SPALINGER M R,SCHWARZFISCHER M,NIECHCIAL A,et al.Loss of PTPN22 promotes intestinal inflammation by compromising granulocyte-mediated antibacterial defence.[J].J Crohns Colitis,2021,15(12):2118-2130. [18] HERING L,KATKEVICIUTE E,SCHWARZFISCHER M,et al.Macrophages compensate for loss of protein tyrosine phosphatase N2 in dendritic cells to protect from elevated colitis[J].Int J Mol Sci,2021,22(13):6820. [19] XU W D,XIE Q B,ZHAO Y,et al.Association of Interleukin-23 receptor gene polymorphisms with susceptibility to Crohn's disease:A meta-analysis[J].Sci Rep,2015(5):18584. [20] ZHOU L,IVANOV I I,SPOLSKI R,et al.IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways[J].Nat Immunol,2007,8(9):967-974. [21] VERSTOCKT B,SALAS A,SANDS B E,et al.IL-12 and IL-23 pathway inhibition in inflammatory bowel disease[J].Nat Rev Gastroenterol Hepatol,2023,20(7):433-446. [22] EAMES H L,CORBIN A L,UDALOVA I A.Interferon regulatory factor 5 in human autoimmunity and murine models of autoimmune disease[J].Transl Res,2016,167(1):167-182. [23] YAN J,PANDEY S P,BARNES B J,et al.T cell-intrinsic IRF5 regulates T cell signaling,migration,and differentiation and promotes intestinal inflammation[J].Cell Rep,2020,31(13):107820. [24] YAN J,HEDL M,ABRAHAM C.Myeloid cell-intrinsic IRF5 promotes T cell responses through multiple distinct checkpoints in vivo,and IRF5 immune-mediated disease risk variants modulate these myeloid cell functions[J].J Immunol,2020,205(4):1024-1038. [25] BRUNE Z,RICE M R,BARNES B J.Potential T cell-intrinsic regulatory roles for IRF5 via cytokine modulation in T helper subset differentiation and function[J].Front Immunol,2020(11):1143. [26] MASSARI G,MAGNONI F,FAVIA G,et al.Frequency of CDH1 germline mutations in non-gastric cancers[J].Cancers,2021,13(10):2321. [27] GREGORY S N,DAVIS J L.CDH1 and hereditary diffuse gastric cancer:A narrative review[J].Chin Clin Oncol,2023,12(3):25. [28] LESSEY L R,ROBINSON S C,CHAUDHARY R,et al.Adherens junction proteins on the move-From the membrane to the nucleus in intestinal diseases[J].Front Cell Dev Biol,2022(10):998373. [29] VEMURI K,RADI S H,SLADEK F M,et al.Multiple roles and regulatory mechanisms of the transcription factor HNF4 in the intestine[J].Front Endocrinol,2023(14):1232569. [30] NAKAI D,MIYAKE M.Intestinal membrane function in inflammatory bowel disease[J].Pharmaceutics,2023,16(1):29. [31] MARTINI E,KRUG S M,SIEGMUND B,et al.Mend your fences:The epithelial barrier and its relationship with mucosal immunity in inflammatory bowel disease[J].Cell Mol Gastroenterol Hepatol,2017,4(1):33-46. [32] CHEN L,LUO S,DUPRE A,et al.The nuclear receptor HNF4 drives a brush border gene program conserved across murine intestine,kidney,and embryonic yolk sac[J].Nat Commun,2021,12(1):2886. [33] MONTENEGRO-MIRANDA P S,van der MEER J H M,JONES C,et al.A novel organoid model of damage and repair identifies HNF4α as a critical regulator of intestinal epithelial regeneration[J].Cell Mol Gastroenterol Hepatol,2020,10(2):209-223. [34] ASANO K,MATSUSHITA T,UMENO J,et al.A genome-wide association study identifies three new susceptibility loci for ulcerative colitis in the Japanese population[J].Nat Genet,2009,41(12):1325-1329. [35] SHAO X X,LIN D P,SUN L,et al.Association of ulcerative colitis with solute-linked carrier family 26 member A3 gene polymorphisms and its expression in colonic tissues in Chinese patients[J].Int J Colorectal Dis,2018,33(9):1169-1172. [36] AMIRI M,JIANG M,SALARI A,et al.Reduced surface pH and upregulated AE2 anion exchange in SLC26A3-deleted polarized intestinal epithelial cells[J].Am J Physiol Cell Physiol,2024,326(3):C829-C842. [37] DING X,LI D,LI M,et al.SLC26A3(DRA)prevents TNF-alpha-induced barrier dysfunction and dextran sulfate sodium-induced acute colitis[J].Lab Invest,2018,98(4):462-476. [38] KUMAR A,PRIYAMVADA S,GE Y,et al.A novel role of SLC26A3 in the maintenance of intestinal epithelial barrier integrity[J].Gastroenterology,2021,160(4):1240-1255.e3. [39] JAYAWARDENA D,PRIYAMVADA S,KAGEYAMA T,et al.Loss of SLC26A3 results in colonic mucosal immune dysregulation via epithelial-immune cell crosstalk[J].Cell Mol Gastroenterol Hepatol,2023,15(4):903-919. [40] LARABI A,BARNICH N,NGUYEN H T T.New insights into the interplay between autophagy,gut microbiota and inflammatory responses in IBD[J].Autophagy,2020,16(1):38-51. [41] GIERYŃSKA M,SZULC-DĄBROWSKA L,STRUZIK J,et al.Integrity of the intestinal barrier:The involvement of epithelial cells and microbiota-a mutual relationship[J].Animals,2022,12(2):145. [42] JONES E J,MATTHEWS Z J,GUL L,et al.Integrative analysis of Paneth cell proteomic and transcriptomic data from intestinal organoids reveals functional processes dependent on autophagy[J].Dis Model Mech,2019,12(3):dmm037069. [43] QUINIOU G,ANDROMAQUE L,DUCLAUX-LORAS R,et al.Impaired reprogramming of the autophagy flux in maturing dendritic cells from crohn disease patients with core autophagy gene-related polymorphisms[J].Autophagy,2024,20(8):1837-1853. [44] SERRAMITO-GÓMEZ I,BOADA-ROMERO E,VILLAMUERA R,et al.Regulation of cytokine signaling through direct interaction between cytokine receptors and the ATG16L1 WD40 domain[J].Nat Commun,2020,11(1):5919. [45] BOADA-ROMERO E,SERRAMITO-GÓMEZ I,SACRISTÁN M P,et al.The T300A Crohn's disease risk polymorphism impairs function of the WD40 domain of ATG16L1[J].Nat Commun,2016(7):11821. [46] SERRAMITO-GÓMEZ I,TERRAZA-SILVESTRE E,FERNÁNDEZ-CABRERA Á,et al.ATG16L1 WD40 domain-dependent IL10R(interleukin 10 receptor)signaling is insensitive to the T300A Crohn disease risk polymorphism[J].Autophagy,2022,18(12):3023-3030. [47] NATH P,JENA K K,MEHTO S,et al.IRGM links autoimmunity to autophagy[J].Autophagy,2021,17(2):578-580. [48] RAI P,JANARDHAN K S,MEACHAM J,et al.IRGM1 links mitochondrial quality control to autoimmunity[J].Nat Immunol,2021,22(3):312-321. [49] KAUFMAN B A,MORA A L.IRGM1,a guardian of mitochondrial DAMP-mediated autoinflammation[J].Nat Immunol,2021,22(3):272-273. [50] NEWMAN L E,SHADEL G S.Mitochondrial DNA release in innate immune signaling[J].Annu Rev Biochem,2023(92):299-332. [51] MEHTO S,JENA K K,NATH P,et al.The Crohn's disease risk factor IRGM limits NLRP3 inflammasome activation by impeding its assembly and by mediating its selective autophagy[J].Mol Cell,2019,73(3):429-445.e7. [52] JENA K K,MEHTO S,NATH P,et al.Autoimmunity gene IRGM suppresses cGAS-STING and RIG-I-MAVS signaling to control interferon response[J].EMBO Rep,2020,21(9):e50051. [53] TEIMOORI-TOOLABI L,SAMADPOOR S,MEHRTASH A,et al.Among autophagy genes,ATG16L1 but not IRGM is associated with Crohn's disease in Iranians.[J].Gene,2018(675):176-184. [54] SIMOVIC I,HILMI I,NG R T,et al.ATG16L1 rs2241880/T300A increases susceptibility to perianal Crohn's disease:An updated meta-analysis on inflammatory bowel disease risk and clinical outcomes.[J].United European Gastroenterol J,2024,12(1):103-121. [55] YAMAMOTO H,ZHANG S,MIZUSHIMA N.Autophagy genes in biology and disease[J].Nat Rev Genet,2023,24(6):382-400. [56] WITOELAR A,JANSEN I E,WANG Y,et al.Genome-wide pleiotropy between parkinson disease and autoimmune diseases[J].JAMA Neurol,2017,74(7):780-792. [57] KERBER E L,PADBERG C,KOLL N,et al.The importance of hypoxia-inducible factors(HIF-1 and HIF-2)for the pathophysiology of inflammatory bowel disease[J].Int J Mol Sci,2020,21(22):8551. [58] CRAMER T,YAMANISHI Y,CLAUSEN B E,et al.HIF-1alpha is essential for myeloid cell-mediated inflammation[J].Cell,2003,112(5):645-657. [59] BÄCKER V,CHEUNG F Y,SIVEKE J T,et al.Knockdown of myeloid cell hypoxia-inducible factor-1α ameliorates the acute pathology in DSS-induced colitis[J].PLoS One,2017,12(12):e0190074. [60] FLÜCK K,BREVES G,FANDREY J,et al.Hypoxia-inducible factor 1 in dendritic cells is crucial for the activation of protective regulatory T cells in murine colitis[J].Mucosal Immunol,2016,9(2):379-390. [61] ASSADI G,SALEH R,HADIZADEH F,et al.LACC1 polymorphisms in inflammatory bowel disease and juvenile idiopathic arthritis[J].Genes Immun,2016,17(4):261-264. [62] CADER M Z,BOROVIAK K,ZHANG Q,et al.C13orf31(FAMIN)is a central regulator of immunometabolic function[J].Nat Immunol,2016,17(9):1046-1056. [63] HUANG C,HEDL M,RANJAN K,et al.LACC1 required for NOD2-induced,ER stress-mediated innate immune outcomes in human macrophages and LACC1 risk variants modulate these outcomes[J].Cell Rep,2019,29(13):4525-4539.e4. [64] LAHIRI A,HEDL M,YAN J,et al.Human LACC1 increases innate receptor-induced responses and a LACC1 disease-risk variant modulates these outcomes[J].Nat Commun,2017(8):15614. [65] KANG J W,YAN J,RANJAN K,et al.Myeloid cell expression of LACC1 is required for bacterial clearance and control of intestinal inflammation[J].Gastroenterology,2020,159(3):1051-1067. [66] HUANG S C C,EVERTS B,IVANOVA Y,et al.Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages[J].Nat Immunol,2014,15(9):846-855. |