[1] YANG Q,FU J,PAN X,et al.A retrospective analysis of the incidence of postoperative delirium and the importance of database selection for its definition[J].BMC Psychiatry,2023, 23(1):88. [2] JIN Z,HU J,MA D.Postoperative delirium:Perioperative assessment,risk reduction,and management[J].Br J Anaesth,2020,125(4):492-504. [3] CHEN H Y,MO L,HU H J,et al.Risk factors of postoperative delirium after cardiac surgery:A meta-analysis[J].J Cardiothorac Surg,2021,16(1):113. [4] ABDULLAH H R,TAN SR,LEE S J,et al.Protocol for a single-centre prospective observational study of postoperative delirium following total joint arthroplasties among South East Asians[J].BMJ Open,2018,8(3):e019426. [5] WANG Y Y,YUE J R,XIE D M,et al.Effect of the tailored,family-involved hospital elder life program on postoperative delirium and function in older adults:A randomized clinical trial[J].JAMA Intern Med.2020,180(1):17-25. [6] NANDA R,NATH A,PATEL S,et al.Machine learning algorithm to evaluate risk factors of diabetic foot ulcers and its severity[J].Med Biol Eng Comput,2022,60(8):2349-2357. [7] HANDELMAN G S,KOK H K,CHANDRA R V,et al.eDoctor:machine learning and the future of medicine[J].J Intern Med,2018,284(6):603-619. [8] DEO R C.Machine learning in medicine[J].Criculation,2015,132(20):1920-1930. [9] AL’AREF S J,ANCHOUCHE K,SINGH G,et al.Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging[J].Eur Heart J,2019,40(24):1975-1986. [10] CARRACEDO-REBOREDO P,LIÑARES-BLANCO J,RODRÍGUEZ-FERNÁNDEZ N,et al.A review on machine learning approaches and trends in drug discovery[J].Comput Struct Biotechnol J,2021,19:4538-4558. [11] GAMBLLA C,GHADDAR B,NAOUM S.Optimization problems for machine learning:A survey[J].Eur J Oper Res,2021,290(3):807-828. [12] ESTEVA A,ROBICQUET A,RAMSUNDAR B,et al.A guide to deep learning in healthcare[J].Nat Med,2019,25(1):24-29. [13] POULIAKIS A,KARAKITSOU E,MARGARI N,et al.Artificial neural networks as decision support tools in cytopathology:Past,present,and future[J].Biomed Eng Comput Biol,2016(7):1-18. [14] 肖雅,王漱阳,凌人,等.人工神经网络算法在消化道恶性肿瘤病理诊断及患者预后预测中的应用[J].浙江大学学报,2023,52(2):243-248. [15] CUESTA H A,COFFMAN D L,BRANAS C,et al.Using decision trees to understand the influence of individual- and neighborhood-level factors on urban diabetes and asthma[J].Health Place,2019(58):102119. [16] LIAO F Y,WU C C,WEI Y C,et al.Analysis of center of pressure signals by using decision tree and empirical mode decomposition to predict falls among older adults[J].J Healthc Eng,2021(2021):6252445. [17] WANG L,ZHU L,JIANG J,et al.Decision tree analysis for evaluating disease activity in patients with rheumatoid arthritis[J].J Int Med Res,2021,49(10):3000605211053232. [18] KALAFI E Y,NOR N A M,TAIB N A,et al.Machine learning and deep learning approaches in breast cancer survival prediction using clinical data[J].Folia Biol(Praha),2019,65(5-6):212-220. [19] PARIKH SA,GOMEZ R,THIRUGNANASAMBANDAM M,et al.Decision tree based classification of abdominal aortic aneurysms using geometry quantification measures[J].Ann Biomed Eng,2018,46(12):2135-2147. [20] VENKATASUBRAMANIAM A,WOLFSON J,MITCHELL N,et al.Decision trees in epidemiological research[J].Emerg Themes Epidemiol,2017(14):11. [21] TIAN Y,YANG J,LAN M,et al.Construction and analysis of a joint diagnosis model of random forest and artificial neural network for heart failure[J].Aging(Albany NY).2020 ,12(24):26221-26235. [22] SPEISER J L,MILLER M E,TOOZE J,et al.A comparison of random forest variable selection methods for classification prediction modeling[J].Expert Syst Appl,2019(134):93-101. [23] HUANG S,CAI N,PACHECO P P,et al.Applications of support vector machine(SVM)learning in cancer genomics[J].Cancer Genomics Proteomics,2018,15(1):41-51. [24] WOLDAREGAY A Z,ÅRSAND E,WALDERHAUG S,et al.Data-driven modeling and prediction of blood glucose dynamics:Machine learning applications in type 1 diabetes[J].Artif Intell Med,2019,98:109-134. [25] GARCIA-CARRETERO R,VIGIL-MEDINA L,MORA-JIMENEZ I,et al.Use of a K-nearest neighbors model to predict the development of type 2 diabetes within 2 years in an obese,hypertensive population[J].Med Biol Eng Comput,2020,58(5):991-1002. [26] SHAHZAD H F,RUSTAM F,FLORES E S,et al.A review of image processing techniques for deepfakes[J].Sensors(Basel),2022 ,22(12):4556. [27] 杨正霞,王和勇,贺施琪,等.基于随机森林算法建立甲状腺功能减退患病风险预测模型[J].广州医药,2023,54(7):16-24. [28] DAVOUDI A,EBADI A,RASHIDI P,et al.Delirium prediction using machine learning models on preoperative electronic health records Data[J].Proc IEEE Int Symp Bioinformatics Bioeng,2017:568-573. [29] RACINE A M,TOMMET D,D’AQUILA M L,et al.Machine learning to develop and internally validate a predictive model for post-operative delirium in a prospective,observational clinical cohort study of older surgical patients[J].J Gen Intern Med,2021,36(2):265-273. [30] RÖHR V,BLANKERTZ B,RADTKE F M,et al.Machine-learning model predicting postoperative delirium in older patients using intraoperative frontal electroencephalographic signatures[J].Front Aging Neurosci,2022(14):911088. [31] BISHARA A,CHIU C,WHITLOCK E L,et al.Postoperative delirium prediction using machine learning models and preoperative electronic health record data[J].BMC Anesthesiol,2022 ,22(1):8. [32] ZHAO H,YOU J,PENG Y,et al.Machine learning algorithm using electronic chart-derived data to predict delirium after elderly hip fracture surgeries:A retrospective case-control study[J],Front Surg,2021(8);634629. [33] HU X Y,LIU H,ZHAO X,et al.Automated machine learning-based model predicts postoperative delirium using readily extractable perioperative collected electronic data[J].CNS Neurosci Ther,2022,28(4):608-618. [34] SONG Y X,YANG X D,LUO Y G,et al.Comparison of logistic regression and machine learning methods for predicting postoperative delirium in elderly patients:A retrospective study[J].CNS Neurosci Ther,2023,29(1):158-167. [35] LIU Y,SHEN W,TIAN Z.Using machine learning algorithms to predict high-risk factors for postoperative delirium in elderly patients[J].Clin Interv Aging,2023(18):157-168. [36] ZHANG Y,WAN D H,CHEN M,et al.Automated machine learning-based model for the prediction of delirium in patients after surgery for degenerative spinal disease[J].CNS Neurosci Ther,2023,29(1):282-295. [37] LEE D Y,OH A R,PARK J,et al.Machine learning-based prediction model for postoperative delirium in non-cardiac surgery[J].BMC Psychiatry,2023,4,23(1):317 [38] 黄琦,关美娇,邹彬,等.机器学习模型预测心脏外科手术患者术后谵妄的有效性[J].临床麻醉学杂志,2023,39(4):363-369. [39] 左都坤,吴卓熙,龙宗泓,等.基于机器学习算法构建心脏手术患者术后早期谵妄风险预测模型[J].陆军军医大学学报,2023,45(8):753-758. |