广州医药 ›› 2024, Vol. 55 ›› Issue (7): 689-704.DOI: 10.3969/j.issn.1000-8535.2024.07.001
• 专家述评 • 下一篇
张彩玲1,2, 兰月2, 马瑗锾1
收稿日期:
2024-04-09
出版日期:
2024-07-20
发布日期:
2024-08-21
通讯作者:
马瑗锾,E-mail:eymayuanhuan@scut.edu.cn;兰月,E-mail:bluemooning@163.com
作者简介:
马瑗锾 华南理工大学附属第二医院(广州市第一人民医院)临床医学研究所,副研究员,医学博士,硕士研究生导师。国家自然科学基金及广东省自然科学基金评审专家,教育部学位论文评审专家,广东省专家库在库专家。中国研究型医院学会神经再生与修复专业委员会委员,北大核心期刊《中国组织工程研究》杂志社医工融合联盟委员,广东省自然医学研究会干细胞与中医再生医学专业委员会常务委员。Frontiers in Molecular Neuroscience、Neurospine、Bioengineering、Journal of Neurotrauma等多个国际期刊审稿人,《广州医药》杂志编委。基金资助:
ZHANG Cailing1,2, LAN Yue2, MA Yuanhuan1
Received:
2024-04-09
Online:
2024-07-20
Published:
2024-08-21
摘要: 脊髓损伤是一种高致残性中枢神经系统疾病,目前缺乏有效的治疗措施。干细胞组织工程兴起和神经调控技术的发展,给脊髓损伤的治疗带来新的希望。目前,多项针对脊髓损伤的干细胞相关治疗项目的临床研究已在全球注册,干细胞疗法是脊髓损伤领域的研究热点,具有良好的应用前景。而神经调控技术一直在临床上脊髓损伤后的康复治疗中发挥着重要作用,特别是靶向神经调控技术近年在脊髓损伤治疗方面取得突破性进展。有研究尝试联合干细胞疗法和神经调控技术应用治疗脊髓损伤,试图取得更好的效果。本文综述了干细胞疗法和神经调控技术在脊髓损伤治疗中的研究进展,旨在探讨其作用效果、修复机制、应用前景以及面临的问题,进一步为脊髓损伤的基础研究和临床转化提供参考。
张彩玲, 兰月, 马瑗锾. 干细胞疗法及神经调控技术在脊髓损伤中的研究进展[J]. 广州医药, 2024, 55(7): 689-704.
ZHANG Cailing, LAN Yue, MA Yuanhuan. Research progress on application of stem cell and neuromodulation technology in spinal cord injury[J]. Guangzhou Medical Journal, 2024, 55(7): 689-704.
[1] GBD Spinal Cord Injuries Collaborators.Global,regional,and national burden of spinal cord injury,1990-2019:A systematic analysis for the Global Burden of Disease Study 2019[J].Lancet Neurol,2023,22(11):1026-1047. [2] HUANG H,YOUNG W,SKAPER S,et al.Clinical Neurorestorative Therapeutic Guidelines for Spinal Cord Injury(IANR/CANR version2019)[J].J Orthop Translat,2020(20):14-24. [3] ZHAO Q,LIU F,ZHOU B,et al.Ferroptosis:A novel therapeutic direction of spinal cord injury[J].Comput Math Methods Med,2022(2022):7906218. [4] YAO C,TANG X,CAO Y,et al.A brief summary of current therapeutic strategies for spinal cord injury[J].Engineering,2022(13):46-52. [5] GAZDIC M,VOLAREVIC V,HARRELL C R,et al.Stem cells therapy for spinal cord injury[J].Int J Mol Sci,2018,19(4):1039. [6] PIZZOLATO C,GUNDUZ M A,PALIPANA D,et al.Non-invasive approaches to functional recovery after spinal cord injury:Therapeutic targets and multimodal device interventions[J].Exp Neurol,2021(339):113612. [7] PAPA S,PIZZETTI F,PERALE G,et al.Regenerative medicine for spinal cord injury:Focus on stem cells and biomaterials[J].Expert Opin Biol Ther,2020,20(10):1203-1213. [8] LIMA R,MONTEIRO A,SALGADO A J,et al.Pathophysiology and therapeutic approaches for spinal cord injury[J].Int J Mol Sci,2022,23(22):13833. [9] CLAYMAN,CHARLES B.The human central nervous system:A synopsis and atlas[J].JAMA,1979,242(14):1547. [10] STROMAN P W,WHEELER-KINGSHOTT C,BACON M,et al.The current state-of-the-art of spinal cord imaging:Methods[J].Neuro Image,2014(84):1070-1081. [11] GOSHGARIAN H G.Development,anatomy,and function of the spinal cordd[M]//Spinal Cord Medicine.New York,NY:Springer Publishing Company 2018. [12] BADHIWALA J H,AHUJA C S,FEHLINGS M G.Time is spine:A review of translational advances in spinal cord injury[J].J Neurosurg Spine,2018,30(1):1-18. [13] ROWLAND J W,HAWRYLUK G W,KWON B,et al.Current status of acute spinal cord injury pathophysiology and emerging therapies:Promise on the horizon[J].Neurosurg Focus,2008,25(5):E2. [14] ANJUM A,YAZID M D,FAUZI DAUD M,et al.Spinal cord injury:Pathophysiology,multimolecular interactions,and underlying recovery mechanisms[J].Int J Mol Sci,2020,21(20). [15] GUEST J,DATTA N,JIMSHELEISHVILI G,et al.Pathophysiology,classification and comorbidities after traumatic spinal cord injury[J].J Pers Med,2022,12(7):1126. [16] PINEAU I,LACROIX S.Proinflammatory cytokine synthesis in the injured mouse spinal cord:Multiphasic expression pattern and identification of the cell types involved[J].J Comp Neurol,2007,500(2):267-285. [17] NOBLE L J,WRATHALL J R.Distribution and time course of protein extravasation in the rat spinal cord after contusive injury[J].Brain Res,1989,482(1):57-66. [18] WANG Y,WANG H,TAO Y,et al.Necroptosis inhibitor necrostatin-1 promotes cell protection and physiological function in traumatic spinal cord injury[J].Neuroscience,2014( 266):91-101. [19] LIU M,WU W,LI H,et al.Necroptosis,a novel type of programmed cell death,contributes to early neural cells damage after spinal cord injury in adult mice[J].J Spinal Cord Med,2015,38(6):745-753. [20] HAUSMANN O N.Post-traumatic inflammation following spinal cord injury[J].Spinal Cord,2003,41(7):369-378. [21] CHEN B,XIAO Z,ZHAO Y,et al.Functional biomaterial-based regenerative microenvironment for spinal cord injury repair[J].2017,4(4):530-532. [22] LINDSAY S L,MCCANNEY G A,WILLISON A G,et al.Multi-target approaches to CNS repair:Olfactory mucosa-derived cells and heparan sulfates[J].Nat Rev Neurol,2020,16(4):229-240. [23] 田婷,李晓光.脊髓损伤再生修复中的问题与挑战[J].中国组织工程研究,2021,25(19):3039-3048. [24] HILL C E,BEATTIE M S,BRESNAHAN J C.Degeneration and sprouting of identified descending supraspinal axons after contusive spinal cord injury in the rat[J].Exp Neurol,2001,171(1):153-169. [25] ASSINCK P,DUNCAN G J,HILTON B J,et al.Cell transplantation therapy for spinal cord injury[J].Nat Neurosci,2017,20(5):637-647. [26] SHAO A,TU S,LU J,et al.Crosstalk between stem cell and spinal cord injury:Pathophysiology and treatment strategies[J].Stem Cell Res Ther,2019,10(1):238. [27] VAWDA R,WILCOX J,FEHLINGS M.Current stem cell treatments for spinal cord injury[J].Indian J Orthop,2012,46(1):10-18. [28] EVANS M J,KAUFMAN M H.Establishment in culture of pluripotential cells from mouse embryos[J].Nature,1981,292(5819):154-156. [29] BOTTAI D,CIGOGNINI D,MADASCHI L,et al.Embryonic stem cells promote motor recovery and affect inflammatory cell infiltration in spinal cord injured mice[J].Exp Neurol,2010,223(2):452-463. [30] FAULKNER J,KEIRSTEAD H S.Human embryonic stem cell-derived oligodendrocyte progenitors for the treatment of spinal cord injury[J].Transpl Immunol,2005,15(2):131-142. [31] KEIRSTEAD H S,NISTOR G,BERNAL G,et al.Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury[J].J Neurosci,2005,25(19):4694-4705. [32] HAMADA M,YOSHIKAWA H,UEDA Y,et al.Introduction of the MASH1 gene into mouse embryonic stem cells leads to differentiation of motoneuron precursors lacking Nogo receptor expression that can be applicable for transplantation to spinal cord injury[J].Neurobiol Dis,2006,22(3):509-522. [33] LUKOVIC D,MORENO MANZANO V,STOJKOVIC M,et al.Concise review:Human pluripotent stem cells in the treatment of spinal cord injury[J].Stem Cells,2012,30(9):1787-1792. [34] LADRAN I,TRAN N,TOPOL A,et al.Neural stem and progenitor cells in health and disease[J].Wiley Interdiscip Rev Syst Biol Med,2013,5(6):701-715. [35] CHENG Z,ZHU W,CAO K,et al.Anti-inflammatory mechanism of neural stem cell transplantation in sSpinal cord injury[J].Int J Mol Sci,2016,17(9):1380. [36] SANKAVARAM S R,HAKIM R,COVACU R,et al.Adult neural progenitor cells transplanted into spinal cord injury differentiate into oligodendrocytes,enhance myelination,and contribute to recovery[J].Stem Cell Reports,2019,12(5):950-966. [37] SANDHU M S,ROSS H H,LEE K Z,et al.Intraspinal transplantation of subventricular zone-derived neural progenitor cells improves phrenic motor output after high cervical spinal cord injury[J].Exp Neurol,2017,287(Pt 2):205-215. [38] MUHEREMU A,PENG J,AO Q.Stem cell based therapies for spinal cord injury[J].Tissue Cell,2016,48(4):328-333. [39] PITTENGER M F,MACKAY A M,BECK S C,et al.Multilineage potential of adult human mesenchymal stem cells[J].Science,1999,284(5411):143-147. [40] ZENG X,ZENG Y S,MA Y H,et al.Bone marrow mesenchymal stem cells in a three-dimensional gelatin sponge scaffold attenuate inflammation,promote angiogenesis,and reduce cavity formation in experimental spinal cord injury[J].Cell Transplant,2011,20(11-12):1881-1899. [41] DE LUCA A,GALLO M,ALDINUCCI D,et al.Role of the EGFR ligand/receptor system in the secretion of angiogenic factors in mesenchymal stem cells[J].J Cell Physiol,2011,226(8):2131-2138. [42] SONG N,SCHOLTEMEIJER M,SHAH K.Mesenchymal stem cell immunomodulation:Mechanisms and therapeutic potential[J].Trends Pharmacol Sci,2020,41(9):653-664. [43] CHUNG H J,CHUNG W H,LEE J H,et al.Expression of neurotrophic factors in injured spinal cord after transplantation of human-umbilical cord blood stem cells in rats[J].J Vet Sci,2016,17(1):97-102. [44] MA Y H,ZENG X,QIU X C,et al.Perineurium-like sheath derived from long-term surviving mesenchymal stem cells confers nerve protection to the injured spinal cord[J].Biomaterials,2018(160):37-55. [45] MA Y H,LIANG Q Y,DING Y,et al.Multimodal repair of spinal cord injury with mesenchymal stem cells[J].Neurospine,2022,19(3):616-629. [46] BROCK J H,GRAHAM L,STAUFENBERG E,et al.Bone marrow stromal cell intraspinal transplants fail to improve motor outcomes in a severe model of spinal cord injury[J].J Neurotrauma,2016,33(12):1103-1114. [47] TAKAHASHI K,YAMANAKA S.Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J].Cell,2006,126(4):663-676. [48] KHAZAEI M,AHUJA C S,FEHLINGS M G.Induced pluripotent stem cells for traumatic spinal cord injury[J].Front Cell Dev Biol,2017(4):152. [49] BOSE A,PETSKO G A,STUDER L.Induced pluripotent stem cells:a tool for modeling Parkinson’s disease[J].Trends Neurosci,2022,45(8):608-620. [50] 彭历芝,位庆帅,马瑗锾,等.构建具有突触传递潜能的iPSC源性抑制性神经网络组织[J].中山大学学报(医学科学版), 2023,44(1):18-25. [51] SAREEN D,O’ROURKE J G,MEERA P,et al.Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion[J].Sci Transl Med,2013,5(208):208ra149. [52] FARAVELLI I,BUCCHIA M,RINCHETTI P,et al.Motor neuron derivation from human embryonic and induced pluripotent stem cells:experimental approaches and clinical perspectives[J].Stem Cell Res Ther, 2014,5(4):87. [53] LU P,WOODRUFF G,WANG Y,et al.Long-distance axonal growth from human induced pluripotent stem cells after spinal cord injury[J].Neuron, 2014,83(4):789-796. [54] GEFFNER L F,SANTACRUZ P,IZURIETA M,et al.Administration of autologous bone marrow stem cells into spinal cord injury patients via multiple routes is safe and improves their quality of life:comprehensive case studies[J].Cell Transplant,2008,17(12):1277-1293. [55] LAI B Q,CHE M T,FENG B,et al.Tissue-Engineered neural network graft relays excitatory signal in the completely transected canine spinal cord[J].Adv Sci(Weinh),2019,6(22):1901240. [56] SZOJKA A,LALH K,ANDREWS S,et al.Biomimetic 3D printed scaffolds for meniscus tissue engineering[J].Bioprinting,2017(8):1-7. [57] SIONKOWSKA A,GADOMSKA M,MUSIAŁ K,et al.Hyaluronic acid as a component of natural polymer blends for biomedical applications:A review[J].Molecules,2020,25(18):4035. [58] AMMAR A S,OSMAN Y,HENDAM A T,et al.A method for reconstruction of severely damaged spinal cord using autologous hematopoietic stem cells and platelet-rich protein as a biological scaffold[J].Asian J Neurosurg,2017,12(4):681-690. [59] WANG C,YUE H,FENG Q,et al.Injectable nanoreinforced shape-memory hydrogel system for regenerating spinal cord tissue from traumatic injury[J].ACS Appl Mater Interfaces,2018,10(35):29299-29307. [60] MA Y H,SHI H J,WEI Q S,et al.Developing a mechanically matched decellularized spinal cord scaffold for the in situ matrix-based neural repair of spinal cord injury[J].Biomaterials,2021(279):121192. [61] WU Z,ZHOU Y,HOU X,et al.Construction of functional neural network tissue combining CBD-NT3-modified linear-ordered collagen scaffold and TrkC-modified iPSC-derived neural stem cells for spinal cord injury repair[J].Bioact Mater,2024(35):242-258. [62] SONG P,HAN T,WU Z,et al.Transplantation of neural stem cells loaded in an IGF-1 bioactive supramolecular nanofiber hydrogel for the effective treatment of spinal cord injury[J].Adv Sci(Weinh),2024,11(17):e2306577. [63] HOR J H,SOH E S,TAN L Y,et al.Cell cycle inhibitors protect motor neurons in an organoid model of Spinal Muscular Atrophy[J].Cell Death Dis,2018,9(11):1100. [64] LIU W,XU B,ZHAO S,et al.Spinal cord tissue engineering via covalent interaction between biomaterials and cells[J].Sci Adv,2023,9(6):eade8829. [65] XUE W,LI B,LIU H,et al.Generation of dorsoventral human spinal cord organoids via functionalizing composite scaffold for drug testing[J].iScience,2023,26(1):105898. [66] WAGNER F B,MIGNARDOT J B,L E GOFF-MIGNARDOT C G,et al.Targeted neurotechnology restores walking in humans with spinal cord injury[J].Nature,2018,563(7729):65-71. [67] ANGELI C A,BOAKYE M,MORTON R A,et al.Recovery of over-ground walking after chronic motor complete spinal cord injury[J].N Engl J Med,2018,379(13):1244-1250. [68] JAMES N D,MCMAHON S B,FIELD-FOTE E C,et al.Neuromodulation in the restoration of function after spinal cord injury[J].Lancet Neurol,2018,17(10):905-917. [69] SERRADJ N,AGGER S F,HOLLIS E R 2nd.Corticospinal circuit plasticity in motor rehabilitation from spinal cord injury[J].Neurosci Lett,2017(652):94-104. [70] LAI B Q,ZENG X,HAN W T,et al.Stem cell-derived neuronal relay strategies and functional electrical stimulation for treatment of spinal cord injury[J].Biomaterials,2021( 279):121211. [71] AHUJA C S,NORI S,TETREAULT L,et al.Traumatic spinal cord injury-repair and regeneration[J].Neurosurgery,2017,80(3S):S9-S22. [72] SHAH M,PETERSON C,YILMAZ E,et al.Current advancements in the management of spinal cord injury:A comprehensive review of literature[J].Surg Neurol Int,2020(11):2. [73] LIU J L,WANG S,CHEN Z H,et al.The therapeutic mechanism of transcranial iTBS on nerve regeneration and functional recovery in rats with complete spinal cord transection[J].Front Immunol,2023(14):1153516. [74] YE H,CHEN V,HENDEE J.Cellular mechanisms underlying state-dependent neural inhibition with magnetic stimulation[J].Sci Rep,2022,12(1):12131. [75] 刘传玉,梅元武,张小乔.经颅磁刺激对局灶性脑缺血大鼠梗死周边区GAP-43和Syp表达的影响[J].卒中与神经疾病,2006,13(1):15-18. [76] KRISHNAN V S,SHIN S S,BELEGU V,et al.Multimodal evaluation of TMS - induced somatosensory plasticity and behavioral recovery in rats with contusion spinal cord injury[J].Front Neurosci,2019(13):387. [77] ROSSINI P M,BURKE D,CHEN R,et al.Non-invasive electrical and magnetic stimulation of the brain,spinal cord,roots and peripheral nerves:Basic principles and procedures for routine clinical and research application.An updated report from an I.F.C.N.Committee[J].Clin Neurophysiol,2015,126(6):1071-1107. [78] MA J,ZHANG Z,SU Y,et al.Magnetic stimulation modulates structural synaptic plasticity and regulates BDNF-TrkB signal pathway in cultured hippocampal neurons[J].Neurochem Int,2013,62(1):84-91. [79] BOATO F,GUAN X,ZHU Y,et al.Activation of MAP2K signaling by genetic engineering or HF-rTMS promotes corticospinal axon sprouting and functional regeneration[J].Sci Transl Med,2023,15(677):eabq6885. [80] GOMES-OSMAN J,FIELD-FOTE E C.Improvements in hand function in adults with chronic tetraplegia following a multiday 10-Hz repetitive transcranial magnetic stimulation intervention combined with repetitive task practice[J].J Neurol Phys Ther,2015,39(1):23-30. [81] de ARAÚJO A V L,BARBOSA V R N,GALDINO G S,et al.Effects of high-frequency transcranial magnetic stimulation on functional performance in individuals with incomplete spinal cord injury:study protocol for a randomized controlled trial[J].Trials,2017,18(1):522. [82] TAZOE T,PEREZ M A.Effects of repetitive transcranial magnetic stimulation on recovery of function after spinal cord injury[J].Arch Phys Med Rehabil,2015,96(4 Suppl):S145-S155. [83] GUNDUZ A,ROTHWELL J,VIDAL J,et al.Non-invasive brain stimulation to promote motor and functional recovery following spinal cord injury[J].Neural Regen Res,2017,12(12):1933-1938. [84] LEFAUCHEUR J P,ANTAL A,AYACHE S S,et al.Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation(tDCS)[J].Clin Neurophysiol,2017,128(1):56-92. [85] MEDEIROS L F,de SOUZA I C,VIDOR L P,et al.Neurobiological effects of transcranial direct current stimulation:a review[J].Front Psychiatry,2012(3):110. [86] STAGG C J,NITSCHE M A.Physiological basis of transcranial direct current stimulation[J].Neuroscientist,2011,17(1):37-53. [87] GOMES-OSMAN J,FIELD-FOTE E C.Cortical vs.afferent stimulation as an adjunct to functional task practice training:a randomized,comparative pilot study in people with cervical spinal cord injury[J].Clin Rehabil,2015,29(8):771-782. [88] YAMAGUCHI T,FUJIWARA T,TSAI Y A,et al.The effects of anodal transcranial direct current stimulation and patterned electrical stimulation on spinal inhibitory interneurons and motor function in patients with spinal cord injury[J].Exp Brain Res,2016,234(6):1469-1478. [89] QIAN J,WU W,XIONG W,et al.Longitudinal optogenetic motor mapping revealed structural and functional impairments and enhanced corticorubral projection after contusive spinal cord injury in mice[J].J Neurotrauma,2019,36(3):485-499. [90] DENG W W,WU G Y,MIN L X,et al.Optogenetic neuronal stimulation promotes functional recovery after spinal cord injury[J].Front Neurosci,2021(15):640255. [91] BOYDEN E S,ZHANG F,BAMBERG E,et al.Millisecond-timescale,genetically targeted optical control of neural activity[J].Nat Neurosci,2005,8(9):1263-1268. [92] ARAVANIS A M,WANG L P,ZHANG F,et al.An optical neural interface:in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology[J].J Neural Eng,2007,4(3):S143-S156. [93] MEROLA A,ROMAGNOLO A,KRISHNA V,et al.Current directions in deep brain stimulation for Parkinson’s disease-directing current to maximize clinical benefit[J].Neurol Ther,2020,9(1):25-41. [94] BACHMANN L C,MATIS A,LINDAU N T,et al.Deep brain stimulation of the midbrain locomotor region improves paretic hindlimb function after spinal cord injury in rats[J].Sci Transl Med,2013,5(208):208ra146. [95] WANG M,JIA L,WU X,et al.Deep brain stimulation improves motor function in rats with spinal cord injury by increasing synaptic plasticity[J].World Neurosurg,2020(140):e294-e303. [96] YUKSEL M M,SUN S,LATCHOUMANE C,et al.Low-intensity focused ultrasound neuromodulation for stroke recovery:A novel deep brain stimulation approach for neurorehabilitation?[J].IEEE Open J Eng Med Biol,2023(4):300-318. [97] DEER T R,MEKHAIL N,PROVENZANO D,et al.The appropriate use of neurostimulation of the spinal cord and peripheral nervous system for the treatment of chronic pain and ischemic diseases:The Neuromodulation Appropriateness Consensus Committee[J].Neuromodulation,2014,17(6):515-550. [98] HARKEMA S,GERASIMENKO Y,HODES J,et al.Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement,standing,and assisted stepping after motor complete paraplegia:a case study[J].Lancet,2011,377(9781):1938-1947. [99] ANGELI C A,EDGERTON V R,GERASIMENKO Y P,et al.Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans[J].Brain,2014,137(Pt 5):1394-1409. [100] ROWALD A,KOMI S,DEMESMAEKER R,et al.Activity-dependent spinal cord neuromodulation rapidly restores trunk and leg motor functions after complete paralysis[J].Nat Med,2022,28(2):260-271. [101] DORRIAN R M,BERRYMAN C F,LAUTO A,et al.Electrical stimulation for the treatment of spinal cord injuries:A review of the cellular and molecular mechanisms that drive functional improvements[J].Front Cell Neurosci,2023(17):1095259. [102] FORMENTO E,MINASSIAN K,WAGNER F,et al.Electrical spinal cord stimulation must preserve proprioception to enable locomotion in humans with spinal cord injury[J].Nat Neurosci,2018,21(12):1728-1741. [103] INANICI F,SAMEJIMA S,GAD P,et al.Transcutaneous electrical spinal stimulation promotes long-term recovery of upper extremity function in chronic tetraplegia[J].IEEE Trans Neural Syst Rehabil Eng,2018,26(6):1272-1278. [104] HOFSTOETTER U S,FREUNDL B,DANNER S M,et al.Transcutaneous spinal cord stimulation induces temporary attenuation of spasticity in individuals with spinal cord injury[J].J Neurotrauma,2020,37(3):481-493. [105] MEGÍA GARCÍA A,SERRANO-MUÑOZ D,TAYLOR J,et al.Transcutaneous spinal cord stimulation and motor rehabilitation in spinal cord injury:A systematic review[J].Neurorehabil Neural Repair,2020,34(1):3-12. [106] CHALFOUH C,GUILLOU C,HARDOUIN J,et al.The regenerative effect of trans-spinal magnetic stimulation after spinal cord injury:Mechanisms and pathways underlying the effect[J].Neurotherapeutics,2020,17(4):2069-2088. [107] HUNANYAN A S,PETROSYAN H A,ALESSI V,et al.Repetitive spinal electromagnetic stimulation opens a window of synaptic plasticity in damaged spinal cord:Role of NMDA receptors[J].J Neurophysiol,2012,107(11):3027-3039. [108] GREHL S,VIOLA H M,FULLER-CARTER P I,et al.Cellular and molecular changes to cortical neurons following low intensity repetitive magnetic stimulation at different frequencies[J].Brain Stimul,2015,8(1):114-123. [109] ZHANG Y T,JIN H,WANG J H,et al.Tail nerve electrical stimulation and electro-acupuncture can protect spinal motor neurons and alleviate muscle atrophy after Spinal cord transection in rats[J].Neural Plast,2017(2017):7351238. [110] LAI B Q,WU R J,HAN W T,et al.Tail nerve electrical stimulation promoted the efficiency of transplanted spinal cord-like tissue as a neuronal relay to repair the motor function of rats with transected spinal cord injury[J].Biomaterials,2023(297):122103. [111] ZHENG Y,MAO Y R,YUAN T F,et al.Multimodal treatment for spinal cord injury:A sword of neuroregeneration upon neuromodulation[J].Neural Regen Res,2020,15(8):1437-1450. [112] MAO Y R,JIN Z X,ZHENG Y,et al.Effects of cortical intermittent theta burst stimulation combined with precise root stimulation on motor function after spinal cord injury:A case series study[J].Neural Regen Res,2022,17(8):1821-1826. [113] ZHAO D,ZHANG Y,ZHENG Y,et al.Double-target neural circuit-magnetic stimulation improves motor function in spinal cord injury by attenuating astrocyte activation[J].Neural Regen Res,2023,18(5):1062-1066. [114] GUO M,WU L,SONG Z,et al.Enhancement of neural stem cell proliferation in rats with spinal cord injury by a combination of repetitive transcranial magnetic stimulation(rTMS)and human umbilical cord blood mesenchymal stem cells(hUCB-MSCs)[J].Med Sci Monit,2020(26):e924445. [115] YANG Y,XU H Y,DENG Q W,et al.Electroacupuncture facilitates the integration of a grafted TrkC-modified mesenchymal stem cell-derived neural network into transected spinal cord in rats via increasing neurotrophin-3[J].CNS Neurosci Ther,2021,27(7):776-791. [116] HUANG L,SUN X,WANG L,et al.Enhanced effect of combining bone marrow mesenchymal stem cells(BMMSCs)and pulsed electromagnetic fields(PEMF)to promote recovery after spinal cord injury in mice[J].MedComm,2022,3(3):e160. [117] FENG S,WANG S,SUN S,et al.Effects of combination treatment with transcranial magnetic stimulation and bone marrow mesenchymal stem cell transplantation or Raf inhibition on spinal cord injury in rats[J].Mol Med Rep,2021,23(4):294. [118] DING Y,YAN Q,RUAN J W,et al.Electro-acupuncture promotes survival,differentiation of the bone marrow mesenchymal stem cells as well as functional recovery in the spinal cord-transected rats[J].BMC Neurosci,2009(10):35. [119] ZENG Y S,DING Y,XU H Y,et al.Electro-acupuncture and its combination with adult stem cell transplantation for spinal cord injury treatment:A summary of current laboratory findings and a review of literature[J].CNS Neurosci Ther,2022,28(5):635-647. |
[1] | 袁行勇, 姚春, 陈炜, 王晋平, 黄钰铧, 曲一荻, 曾汉林, 崔恩山, 廖雨芯. 阿尔茨海默病不同治疗方式研究新进展[J]. 广州医药, 2024, 55(3): 236-244. |
[2] | 刘芳洁, 宾婷, 谢媚, 解荣丽, 王小博. 监测外周血CD34+细胞计数预测普乐沙福联合G-CSF自体干细胞动员的效果[J]. 广州医药, 2023, 54(12): 72-77. |
[3] | 尹燕燕. 益气活血汤剂联合热敏灸在脊髓损伤后尿潴留患者中的应用[J]. 广州医药, 2023, 54(1): 71-75. |
[4] | 张晓瀚, 陈诗彧, 汪鹏程, 蔡云, 杜新. 聚乙二醇化重组人粒细胞刺激因子在造血干细胞移植后促进造血恢复的疗效分析[J]. 广州医药, 2022, 53(6): 56-60. |
[5] | 邱婷, 周洁, 翁廷松, 林敏诗. 骨髓间充质干细胞源性微泡修复大鼠早发性卵巢功能不全的自噬机制[J]. 广州医药, 2020, 51(4): 18-21. |
[6] | 聂力, 罗俊男, 温世锋. 手术与保守治疗无骨折脱位型颈脊髓损伤的Meta分析[J]. 广州医药, 2020, 51(4): 119-123. |
[7] | 郝文革, 孙逊沙, 吴洁莹, 陈劲松, 喻秋霞, 李焱, 吴韶清. 低氧预处理人胎盘绒毛膜间充质干细胞环状RNAs的生物信息学分析[J]. 广州医药, 2019, 50(2): 1-6. |
[8] | 江和碧, 张晓红, 江华. 利妥昔单抗治疗造血干细胞移植后血小板输注无效的临床疗效[J]. 广州医药, 2018, 49(6): 13-16. |
[9] | 赵俪月, 杨胜平, 王宝彦. 苯妥英钠对大鼠牙周膜干细胞粘附于牙根面的影响[J]. 广州医药, 2017, 48(5): 1-5. |
[10] | 黎宇苗, 张玉平, 周铭, 莫文健, 毛平, 王顺清. 单倍体亲缘异基因造血干细胞移植治疗SAA 1例[J]. 广州医药, 2016, 47(3): 28-30. |
[11] | 李鹏, 陈凡帆, 谢伟, 张昊, 钟文军, 涂兰波, 曹志恺, 全伟. 海马可溶性因子体外诱导分化大鼠内源性神经干细胞为胶质样细胞[J]. 广州医药, 2016, 47(1): 1-5. |
[12] | 陈敏, 郑纪容, 赵俊, 明凯华. 胶原—壳聚糖人工支架的理化性质和相容性分析[J]. 广州医药, 2015, 46(1): 32-35. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
本系统由北京玛格泰克科技发展有限公司设计开发