[1] PAGET S.The distribution of secondary growths in cancer of the breast[J].Lancet,1889,133(3421):571-573. [2] BASLAN T,HICKS J.Unravelling biology and shifting paradigms in cancer with single-cell sequencing[J].Nat Rev Cancer,2017,17(9):557-569. [3] WYNN T A,CHAWLA A,POLLARD J W.Macrophage biology in development,homeostasis and disease[J].Nature,2013,496(7446):445-455. [4] QIAN B Z,LI J,ZHANG H,et al.CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis[J].Nature,2011,475(7355):222-225. [5] SU S,LIU Q,CHEN J,et al.A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis[J].Cancer cell,2014,25(5):605-620. [6] CHEN Q,ZHANG X H,MASSAGUé J.Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs[J].Cancer cell,2011,20(4):538-549. [7] QIAN B Z,POLLARD J W.Macrophage diversity enhances tumor progression and metastasis[J].Cell,2010,141(1):39-51. [8] SYLVESTRE M,CRANE C A,PUN S H.Progress on modulating tumor-associated macrophages with biomaterials[J].Adv Mater,2020,32(13):e1902007. [9] MURRAY P J,ALLEN J E,BISWAS S K,et al.Macrophage activation and polarization:nomenclature and experimental guidelines[J].Immunity,2014,41(1):14-20. [10] NGAMBENJAWONG C,GUSTAFSON H H,PUN S H.Progress in tumor-associated macrophage(TAM)-targeted therapeutics[J].Adv Drug Deliv Rev,2017(114):206-221. [11] NAJAFI M,HASHEMI GORADEL N,FARHOOD B,et al.Macrophage polarity in cancer:A review[J].J Cell Biochem,2019,120(3):2756-2765. [12] SHI J,KANTOFF P W,WOOSTER R,et al.Cancer nanomedicine:progress,challenges and opportunities[J].Nat Rev Cancer,2017,17(1):20-37. [13] QIAN Y,QIAO S,DAI Y,et al.Molecular-Targeted Immunotherapeutic Strategy for Melanoma via Dual-Targeting Nanoparticles Delivering Small Interfering RNA to Tumor-Associated Macrophages[J].ACS Nano,2017,11(9):9536-9549. [14] PANYAM J,LABHASETWAR V.Biodegradable nanoparticles for drug and gene delivery to cells and tissue[J].Adv Drug Deliv Rev,2003,55(3):329-347. [15] NG K K,LOVELL J F,ZHENG G.Lipoprotein-inspired nanoparticles for cancer theranostics[J].Acc Chem Res,2011,44(10):1105-1113. [16] CHEN S,QIN F,WANG M,et al.Nanoparticles targeting tumor-associated macrophages:A novel anti-tumor therapy[J].Nano Research,2022,15(3):2177-2195. [17] ZHANG H,ZHANG X,REN Y,et al.An in situ microenvironmental nano-regulator to inhibit the proliferation and metastasis of 4T1 tumor[J].Theranostics,2019,9(12):3580-3594. [18] GAN J,DOU Y,LI Y,et al.Producing anti-inflammatory macrophages by nanoparticle-triggered clustering of mannose receptors[J].Biomaterials,2018(178):95-108. [19] OVAIS M,GUO M,CHEN C.Tailoring nanomaterials for targeting tumor-associated macrophages[J].Adv Mater,2019,31(19):e1808303. [20] YE J,YANG Y,DONG W,et al.Drug-free mannosylated liposomes inhibit tumor growth by promoting the polarization of tumor-associated macrophages[J].Int J Nanomedicine,2019(14):3203-3220. [21] YE J,YANG Y,JIN J,et al.Targeted delivery of chlorogenic acid by mannosylated liposomes to effectively promote the polarization of TAMs for the treatment of glioblastoma[J].Bioactive materials,2020,5(3):694-708. [22] CHEN B,GAO A,TU B,et al.Metabolic modulation via mTOR pathway and anti-angiogenesis remodels tumor microenvironment using PD-L1-targeting codelivery[J].Biomaterials,2020(255):120187. [23] WEI B,PAN J,YUAN R,et al.Polarization of tumor-associated macrophages by nanoparticle-loaded escherichia coli combined with immunogenic cell death for cancer immunotherapy[J].Nano Lett,2021,21(10):4231-4240. [24] ZHANG Y,CHEN Y,LI J,et al.Development of toll-like receptor agonist-loaded nanoparticles as precision immunotherapy for reprogramming tumor-associated macrophages[J].ACS Appl Mater Interfaces,2021,13(21):24442-24452. [25] WANG H Y,GE J C,ZHANG F Y,et al.Dendrobium officinale polysaccharide promotes M1 polarization of TAMs to inhibit tumor growth by targeting TLR2[J].Carbohydrate Polymers,2022(292):119683. [26] CHENG N,WATKINS-SCHULZ R,JUNKINS R D,et al.A nanoparticle-incorporated STING activator enhances antitumor immunity in PD-L1-insensitive models of triple-negative breast cancer[J].JCI Insight,2018,3(22):e120638. [27] KANEDA M M,MESSER K S,RALAINIRINA N,et al.PI3Kγ is a molecular switch that controls immune suppression[J].Nature,2016,539(7629):437-442. [28] DE HENAU O,RAUSCH M,WINKLER D,et al.Overcoming resistance to checkpoint blockade therapy by targeting PI3Kγ in myeloid cells[J].Nature,2016,539(7629):443-447. [29] LI K,LU L,XUE C,et al.Polarization of tumor-associated macrophage phenotype via porous hollow iron nanoparticles for tumor immunotherapy in vivo[J].Nanoscale,2020,12(1):130-144. [30] LI M,LI M,YANG Y,et al.Remodeling tumor immune microenvironment via targeted blockade of PI3K-γ and CSF-1/CSF-1R pathways in tumor associated macrophages for pancreatic cancer therapy[J].J Control Release,2020(321):23-35. [31] SUN J H,LIANG X,CAI M,et al.Protein-crowned micelles for targeted and synergistic tumor-associated macrophage reprogramming to enhance cancer treatment[J].Nano Lett,2022,22(11):4410-4420. [32] LIN M,YANG Z,YANG Y,et al.CRISPR-based in situ engineering tumor cells to reprogram macrophages for effective cancer immunotherapy[J].Nano Today,2022(42):101359. [33] CHEN M,MIAO Y, QIAN K,et al.Detachable liposomes combined immunochemotherapy for enhanced triple-negative breast cancer treatment through reprogramming of tumor-associated macrophages[J].Nano Lett,2021,21(14):6031-6041. [34] JIN H,HE Y,ZHAO P,et al.Targeting lipid metabolism to overcome EMT-associated drug resistance via integrin β3/FAK pathway and tumor-associated macrophage repolarization using legumain-activatable delivery[J].Theranostics,2019,9(1):265-278. [35] YIN W,YU X,KANG X,et al.Remodeling tumor-associated macrophages and neovascularization overcomes eGFR(T790M)-associated drug resistance by PD-L1 nanobody-mediated codelivery[J].Small,2018,14(47):e1802372. [36] LIU L,YI H,HE H,et al.Tumor associated macrophage-targeted microRNA delivery with dual-responsive polypeptide nanovectors for anti-cancer therapy[J].Biomaterials,2017(134):166-179. [37] PARAYATH N N,PARIKH A,AMIJI M M.Repolarization of tumor-associated macrophages in a genetically engineered nonsmall cell lung cancer model by intraperitoneal administration of hyaluronic acid-based nanoparticles encapsulating microrna-125b[J].Nano Lett,2018,18(6):3571-3579. [38] QIAN H,ZHOU T,FU Y,et al.Self-assembled tetrahedral framework nucleic acid mediates tumor-associated macrophage reprogramming and restores antitumor immunity[J].Molecular therapy Nucleic acids,2022(27):763-773. [39] ESCRIBESE M M,CASAS M,CORBí A L.Influence of low oxygen tensions on macrophage polarization[J].Immunobiology,2012,217(12):1233-1240. [40] KELLY B,O'NEILL L A.Metabolic reprogramming in macrophages and dendritic cells in innate immunity[J].Cell research,2015,25(7):771-784. [41] WANG H,TANG Y,FANG Y,et al.Reprogramming tumor immune microenvironment(time)and metabolism via biomimetic targeting codelivery of shikonin/JQ1[J].Nano Lett,2019,19(5):2935-2944. [42] ZHANG Y,CHOKSI S,CHEN K,et al.ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages[J].Cell research,2013,23(7):898-914. [43] COVARRUBIAS A,BYLES V,HORNG T.ROS sets the stage for macrophage differentiation[J].Cell Res,2013,23(8):984-985. [44] ZANGANEH S,HUTTER G,SPITLER R,et al.Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues[J].Nat Nanotechnol,2016,11(11):986-994. [45] SHI C,LIU T,GUO Z,et al.Reprogramming tumor-associated macrophages by nanoparticle-based reactive oxygen species photogeneration[J].Nano Lett,2018,18(11):7330-7342. [46] LIU L,HE H,LIANG R,et al.ROS-Inducing micelles sensitize tumor-associated macrophages to tlr3 stimulation for potent immunotherapy[J].Biomacromolecules,2018,19(6):2146-2155. [47] BHANDARI V,HOEY C,LIU L Y,et al.Molecular landmarks of tumor hypoxia across cancer types[J].Nature Genetics,2019,51(2):308-318. [48] CHEN Q,CHEN J,YANG Z,et al.Nanoparticle-enhanced radiotherapy to trigger robust cancer immunotherapy[J].Adv Mater,2019,31(10):e1802228. [49] ZHANG W,SHI Y,LI H,et al.In situ injectable nano-complexed hydrogel based on chitosan/dextran for combining tumor therapy via hypoxia alleviation and TAMs polarity regulation[J].Carbohydrate Polymers,2022(288):119418. |