[1] 《中国心血管健康与疾病报告2022》编写组.《中国心血管健康与疾病报告2022》要点解读[J].中国心血管杂志,2023,28(4):297-312. [2] TSAO C W,ADAY A W,ALMARZOOQ Z I,et al.Heart disease and stroke statistics-2022 update:A report from the American heart association[J].Circulation,2022,145(8):e153-e639. [3] DISCHER D E,MOONEY D J,ZANDSTRA P W.Growth factors,matrices,and forces combine and control stem cells[J].Science,2009,324(5935):1673-1677. [4] MEHTA M,SCHMIDT-BLEEK K,DUDA G N,et al.Biomaterial delivery of morphogens to mimic the natural healing cascade in bone[J].Adv Drug Deliv Rev,2012,64(12):1257-1276. [5] DWYER K D,COULOMBE K L K.Cardiac mechanostructure:Using mechanics and anisotropy as inspiration for developing epicardial therapies in treating myocardial infarction[J].Bioact Mater,2021,6(7):2198-2220. [6] BHANA B,IYER R K,CHEN W L,et al.Influence of substrate stiffness on the phenotype of heart cells[J].Biotechnol Bioeng,2010,105(6):1148-1160. [7] YAO Y,LI A,WANG S,et al.Multifunctional elastomer cardiac patches for preventing left ventricle remodeling after myocardial infarction in vivo[J].Biomaterials,2022(282):121382. [8] WILLIAMS C,BUDINA E,STOPPEL W L,et al.Cardiac extracellular matrix-fibrin hybrid scaffolds with tunable properties for cardiovascular tissue engineering[J].Acta Biomater,2015(14):84-95. [9] CHAUDHURI O,COOPER-WHITE J,JANMEY P A,et al.Effects of extracellular matrix viscoelasticity on cellular behaviour[J].Nature,2020,584(7822):535-546. [10] CORBIN E A,VITE A,PEYSTER E G,et al.Tunable and reversible substrate stiffness reveals a dynamic mechanosensitivity of cardiomyocytes[J].ACS Appl Mater Interfaces,2019,11(23):20603-20614. [11] LIN X,LIU Y,BAI A,et al.A viscoelastic adhesive epicardial patch for treating myocardial infarction[J].Nat Biomed Eng,2019,3(8):632-643. [12] LEE H P,GU L,MOONEY D J,et al.Mechanical confinement regulates cartilage matrix formation by chondrocytes[J].Nat Mater,2017,16(12):1243-1251. [13] KAPAT K,SHUBHRA Q T H,ZHOU M,et al.Piezoelectric nano-biomaterials for biomedicine and tissue regeneration[J].Adv Funct Mater,2020,30(44):1909045. [14] CUI Z,NI N C,WU J,et al.Polypyrrole-chitosan conductive biomaterial synchronizes cardiomyocyte contraction and improves myocardial electrical impulse propagation[J].Theranostics,2018,8(10):2752-2764. [15] YU C,YUE Z,SHI M,et al.An Intrapericardial injectable hydrogel patch for mechanical-Electrical coupling with infarcted myocardium[J].ACS Nano,2022,16(10):16234-16248. [16] HE Y,YE G,SONG C,et al.Mussel-inspired conductive nanofibrous membranes repair myocardial infarction by enhancing cardiac function and revascularization[J].Theranostics,2018,8(18):5159-5177. [17] WANG L,JIANG J,HUA W,et al.Mussel-inspired conductive cryogel as cardiac tissue patch to repair myocardial infarction by migration of conductive nanoparticles[J].Adv Funct Mater,2016,26(24):4293-4305. [18] WANG L,LIU Y,YE G,et al.Injectable and conductive cardiac patches repair infarcted myocardium in rats and minipigs[J].Nat Biomed Eng,2021,5(10):1157-1173. [19] TANG H,MO Y,LI W,et al.Piezoelectric PDMS/AlN film for osteogenesis in vitro[J].ACS Biomater Sci Eng,2023,9(7):4187-4196. [20] MENG X,XIAO X,JEON S,et al.An ultrasound-driven bioadhesive triboelectric nanogenerator for instant wound sealing and electrically accelerated healing in emergencies[J].Adv Mater,2023,35(12):e2209054. [21] LIU Z,CAI M,ZHANG X,et al.Cell-traction-triggered on-demand electrical stimulation for neuron-like differentiation[J].Adv Mater,2021,33(51):e2106317. [22] LIU W,LI X,JIAO Y,et al.Biological effects of a three-dimensionally printed Ti6Al4V scaffold coated with piezoelectric BaTiO3 nanoparticles on bone formation[J].ACS Appl Mater Interfaces,2020,12(46):51885-51903. [23] TUFAN Y,ÖZTATLı H,DOGANAY D,et al.Multifunctional silk fibroin/carbon nanofiber scaffolds for in vitro cardiomyogenic differentiation of induced pluripotent stem cells and energy harvesting from simulated cardiac motion[J].ACS Appl Mater Interfaces,2023,15(36):42271-42283. [24] JIANG Y L,NIU S,LIN Z,et al.Injectable hydrogel with dual-sensitive behavior for targeted delivery of oncostatin M to improve cardiac restoration after myocardial infarction[J].J Mater Chem B,2022,10(34):6514-6531. [25] ZHENG Z,LEI C,LIU H,et al.A ROS-responsive liposomal composite hydrogel integrating improved mitochondrial function and pro-angiogenesis for efficient treatment of myocardial infarction[J].Adv Healthc Mater,2022,11(19):e2200990. [26] SHIN S H,LEE J,AHN D G,et al.Co-delivery of vascular endothelial growth factor and angiopoietin-1 using injectable microsphere/hydrogel hybrid systems for therapeutic angiogenesis[J].Pharm Res,2013,30(8):2157-2165. [27] YU Y,WANG S,CHEN X,et al.Sulfated oligosaccharide activates endothelial Notch for inducing macrophage-associated arteriogenesis to treat ischemic diseases[J].Proc Natl Acad Sci U S A,2023,120(46):e2307480120. [28] DING Y,ZHAO A S,LIU T,et al.An injectable nanocomposite hydrogel for potential application of vascularization and tissue repair[J].Ann Biomed Eng,2020,48(5):1511-1523. [29] LIU L,WU J,LV S,et al.Synergistic effect of hierarchical topographic structure on 3D-printed titanium scaffold for enhanced coupling of osteogenesis and angiogenesis[J].Mater Today Bio,2023(23):100866. [30] PENG L,BARCZAK A J,BARBEAU R A,et al.Whole genome expression analysis reveals differential effects of TiO2 nanotubes on vascular cells[J].Nano Lett,2010,10(1):143-148. [31] 王靖,刘昌胜.材料生物学:骨修复材料的机遇与挑战[J].中国材料进展,2019,38(4):359-364. [32] ZHANG W,FENG C,YANG G,et al.3D-printed scaffolds with synergistic effect of hollow-pipe structure and bioactive ions for vascularized bone regeneration[J].Biomaterials,2017(135):85-95. [33] LI Y,XIAO Y,LIU C.The horizon of materiobiology:A perspective on material-guided cell behaviors and tissue engineering[J].Chem Rev,2017,117(5):4376-4421. [34] OLIVEIRA J B,SOARES A,SPOSITO A C.Inflammatory response during myocardial infarction[J].Adv Clin Chem,2018(84):39-79. [35] ONG S B,HERNÁNDEZ-RESÉNDIZ S,CRESPO-AVILAN G E,et al.Inflammation following acute myocardial infarction:Multiple players,dynamic roles,and novel therapeutic opportunities[J].Pharmacol Ther,2018(186):73-87. [36] MATA R,YAO Y,CAO W,et al.The dynamic inflammatory tissue microenvironment:Signality and disease therapy by biomaterials[J].Research,2021(2021):4189516. [37] KÖHLER A C,SAG C M,MAIER L S.Reactive oxygen species and excitation-contraction coupling in the context of cardiac pathology[J].J Mol Cell Cardiol,2014(73):92-102. [38] SPAULDING K A,ZHU Y,TAKABA K,et al.Myocardial injection of a thermoresponsive hydrogel with reactive oxygen species scavenger properties improves border zone contractility[J].J Biomed Mater Res A,2020,108(8):1736-1746. [39] WANG S,YAO Y,ZHOU T,et al.Preservation of cardiac functions post myocardial infarction in vivo by a phenylboric acid-grafted hyaluronic hydrogel with anti-oxidation and accelerated degradation under oxidative microenvironment[J].Compos Part B Eng,2022(238):109941. [40] TANG J,CUI X,CARANASOS T G,et al.Heart repair using nanogel-encapsulated human cardiac stem cells in mice and pigs with myocardial infarction[J].ACS Nano,2017,11(10):9738-9749. [41] HU C,LIU W,LONG L,et al.Regeneration of infarcted hearts by myocardial infarction-responsive injectable hydrogels with combined anti-apoptosis,anti-inflammatory and pro-angiogenesis properties[J].Biomaterials,2022(290):121849. [42] CHEN J,YANG J,LIU R,et al.Dual-targeting theranostic system with mimicking apoptosis to promote myocardial infarction repair via modulation of macrophages[J].Theranostics,2017,7(17):4149-4167. [43] KWON S P,HWANG B H,PARK E H,et al.Nanoparticle-mediated blocking of excessive inflammation for prevention of heart failure following myocardial infarction[J].Small,2021,17(32):e 2101207. [44] YANG L,YANG L,LU K,et al.3D chiral self-assembling matrixes for regulating polarization of macrophages and enhance repair of myocardial infarction[J].Adv Sci,2023,10(32):e2304627. [45] XIAO Y,WANG T,SONG X,et al.Copper promotion of myocardial regeneration[J].Exp Biol Med,2020,245(10):911-921. [46] HU F,HUANG K,ZHANG H,et al.IGF-PLGA microspheres promote angiogenesis and accelerate skin flap repair and healing by inhibiting oxidative stress and regulating the Ang 1/Tie 2 signaling pathway[J].Eur J Pharm Sci,2024(193):106687. [47] WU C,ZHANG Y,XU Y,et al.Injectable polyaniline nanorods/alginate hydrogel with AAV9-mediated VEGF overexpression for myocardial infarction treatment[J].Biomaterials,2023(296):122088. [48] GUO W,FENG W,HUANG J,et al.Supramolecular self-assembled nanofibers efficiently activate the precursor of hepatocyte growth factor for angiogenesis in myocardial infarction therapy[J].ACS Appl Mater Interfaces,2021,13(19):22131-22141. [49] LIU Y,ZHAO F,SONG T,et al.Nanohybrid dual-network chitosan-based hydrogels:Synthesis,characterization,quicken infected wound healing by angiogenesis and immune-microenvironment regulation[J].Carbohydr Polym,2024(325):121589. [50] RURIK J G,TOMBÁCZ I,YADEGARI A,et al.CAR T cells produced in vivo to treat cardiac injury[J].Science,2022,375(6576):91-96. [51] WANG X,PIERRE V,LIU C,et al.Exogenous extracellular matrix proteins decrease cardiac fibroblast activation in stiffening microenvironment through CAPG[J].J Mol Cell Cardiol,2021(159):105-119. [52] MA C X,WEI Z R,SUN T,et al.Circ-sh3rf3/GATA-4/miR-29a regulatory axis in fibroblast-myofibroblast differentiation and myocardial fibrosis[J].Cell Mol Life Sci,2023,80(2):50. [53] JI X,MENG Y,WANG Q,et al.Cysteine-based redox-responsive nanoparticles for fibroblast-targeted drug delivery in the treatment of myocardial infarction[J].ACS Nano,2023,17(6):5421-5434. [54] LI Y,DAL-PRA S,MIROTSOU M,et al.Tissue-engineered 3-dimensional(3D)microenvironment enhances the direct reprogramming of fibroblasts into cardiomyocytes by microRNAs[J].Sci Rep,2016,(6):38815. [55] JACKSON-WEAVER O,UNGVIJANPUNYA N,YUAN Y,et al.PRMT1-p53 pathway controls epicardial EMT and invasion[J].Cell Rep,2020,31(10):107739. [56] GERMANI A,FOGLIO E,CAPOGROSSI M C,et al.Generation of cardiac progenitor cells through epicardial to mesenchymal transition[J].J Mol Med,2015,93(7):735-748. [57] WANG Q L,WANG H J,LI Z H,et al.Mesenchymal stem cell-loaded cardiac patch promotes epicardial activation and repair of the infarcted myocardium[J].J Cell Mol Med,2017,21(9):1751-1766. |