[1] RUIZ-ORTEGA M, RAYEGO-MATEOS S, LAMAS S, et al. Targeting the progression of chronic kidney disease[J]. Nat Rev Nephrol, 2020, 16(5): 269-288. [2] DENG Y, LI N, WU Y, et al. Global, regional, and national burden of diabetes-related chronic kidney disease from 1990 to 2019[J]. Front endocrinol, 2021(12): 672350. [3] FOREMAN K J, MARQUEZ N, DOLGERT A, et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016-40 for 195 countries and territories[J]. Lancet, 2018, 392(10159): 2052-2090. [4] UMPHREYS B D. Mechanisms of renal fibrosis[J]. Annu Rev Physiol, 2018(80): 309-326. [5] CHEN T K, KNICELY D H, GRAMS M E. Chronic kidney disease diagnosis and management: a review[J]. J Am Med Assoc, 2019, 322(13): 1294-1304. [6] ROBERTS T C, LANGER R, WOOD M J A. Advances in oligonucleotide drug delivery[J]. Nat Rev Drug Discov, 2020, 19(10): 673-694. [7] HUANG L, YANG J, WANG T, GAO J, et al. Engineering of small-molecule lipidic prodrugs as novel nanomedicines for enhanced drug delivery[J]. J Nanobiotechnol, 2022, 20(1): 49. [8] KAMALY N, HE J C, AUSIELLO D A, et al. Nanomedicines for renal disease: current status and future applications[J]. Nat Rev Nephrol, 2016, 12(12): 738-753. [9] STATER E P, SONAY A Y, HART C, et al. The ancillary effects of nanoparticles and their implications for nanomedicine[J]. Nat Nanotechnol, 2021, 16(11): 1180-1194. [10] FALKE L L, GHOLIZADEH S, GOLDSCHMEDING R, et al. Diverse origins of the myofibroblast-implications for kidney fibrosis[J]. Nat Rev Nephrol, 2015, 11(4): 233-244. [11] WOO K-T, CHOONG H L, WONG K-S, et al. The contribution of chronic kidney disease to the global burden of major noncommunicable diseases[J]. Kidney Int, 2012, 81(10): 1044-1045. [12] BOOR P, OSTENDORF T, FLOEGE J. Renal fibrosis: novel insights into mechanisms and therapeutic targets[J]. Nat Rev Nephrol, 2010, 6(11): 643-656. [13] WIGHT T N, POTTER-PERIGO S. The extracellular matrix: an active or passive player in fibrosis?[J] Am J Physiol Gastr L, 2011, 301(6): G950-955. [14] SATCHELL S C, BRAET F. Glomerular endothelial cell fenestrations: an integral component of the glomerular filtration barrier[J]. Am J Physiol Renal, 2009, 296(5): F947-F956. [15] CURRY F E, ADAMSON R H. Endothelial glycocalyx: permeability barrier and mechanosensor[J]. Ann Biomed Eng, 2012, 40(4): 828-839. [16] SUH J H, MINER J H. The glomerular basement membrane as a barrier to albumin[J]. Nat Rev Nephrol, 2013, 9(8): 470-477. [17] KANWAR Y S, FARQUHAR M G. Presence of heparan sulfate in the glomerular basement membrane[J]. P Natl Acad Sci USA, 1979, 76(3), 1303-1307. [18] OGAWA S, OTA Z, SHIKATA K, et al. High-resolution ultrastructural comparison of renal glomerular and tubular basement membranes[J]. Am J Nephrol, 1999, 19(6): 686-693. [19] SANCEY L, KOTB S, TRULLLET C, et al. Long-term in vivo clearance of gadolinium-based aguix nanoparticles and their biocompatibility after systemic injection[J]. ACS Nano, 2015, 9(3): 2477-2488. [20] WILLIAMS R M, SHAH J, NG B D, et al. Mesoscale nanoparticles selectively target the renal proximal tubule epithelium[J]. Nano Lett, 2015, 15(4): 2358-2364. [21] LI S, ZHANG H, CHEN K, et al. Application of chitosan/alginate nanoparticle in oral drug delivery systems: prospects and challenges[J]. Drug Deliv, 2022, 29(1): 1142-1149. [22] LIN L, SUN Y, WANG D, et al. Celastrol ameliorates ulcerative colitis-related colorectal cancer in mice via suppressing inflammatory responses and epithelial-mesenchymal transition[J]. Front Pharmacol, 2016(6): 320. [23] LI R, LI Y, ZHANG J, et al. Targeted delivery of celastrol to renal interstitial myofibroblasts using fibronectin-binding liposomes attenuates renal fibrosis and reduces systemic toxicity[J]. J Control Release, 2020(320): 32-44. [24] FAN J M, NG Y Y, HILL P A, et al. Transforming growth factor-beta regulates tubular epithelial-myofibroblast transdifferentiation in vitro[J]. Kidney Int, 1999, 56(4): 1455-1467. [25] GUO P, WANG J, GAO W, et al. Salvianolic acid B reverses multidrug resistance in nude mice bearing human colon cancer stem cells[J]. Mol Med Rep, 2018, 18(2): 1323-1334. [26] LI J, ZHANG C, HE W, et al. Coordination-driven assembly of catechol-modified chitosan for the kidney-specific delivery of salvianolic acid B to treat renal fibrosis[J]. Biomater Sci, 2017, 6(1): 179-188. [27] QIAO H, SUN M, SU Z, et al. Kidney-specific drug delivery system for renal fibrosis based on coordination-driven assembly of catechol-derived chitosan[J]. Biomaterials, 2014, 35(25): 7157-7171. [28] WANG X, DENG B, YU M, et al. Constructing a passive targeting and long retention therapeutic nanoplatform based on water-soluble, non-toxic and highly-stable core-shell poly(amino acid) nanocomplexes[J]. Biomater Sci, 2021, 9(21): 7065-7075. [29] VITIELLO P P, CARDONE C, MARTINI G, et al. Receptor tyrosine kinase-dependent PI3K activation is an escape mechanism to vertical suppression of the EGFR/RAS/MAPK pathway in KRAS-mutated human colorectal cancer cell lines[J]. J Exp Clin Canc Res, 2019, 38(1): 1-12. [30] LIU B C, LAN H Y, LV L L. Renal Fibrosis: Mechanisms and Therapies[M]. Springer Singapore, 2019. [31] WANG Z, LIN Q, DAI W, et al. Pioglitazone downregulates Twist-1 expression in the kidney and protects renal function of Zucker diabetic fatty rats[J]. Biomed Pharmacother, 2019(118): 109346. [32] WEI S, XU C, ZHANG Y, et al. Ultrasound assisted a peroxisome proliferator-activated receptor (PPAR)gamma agonist-loaded nanoparticle-microbubble complex to attenuate renal interstitial fibrosis[J]. Int J Nanomed, 2020(15): 7315-7327. [33] BRODY H. GENE THERAPY[J]. Nature, 2018, 564(7735): S5-S5. [34] ZHAO Z, WANG J, MAO H Q,et al. Polyphosphoesters in drug and gene delivery[J]. Adv Drug Delivery Rev, 2003, 55(4): 483-499. [35] SUBHAN M A, TORCHILIN V P. siRNA based drug design, quality, delivery and clinical translation[J]. Nanomed-Nanotechnol, 2020(29): 102239. [36] STOKMAN G, QIN Y, RACZ Z, et al. Application of siRNA in targeting protein expression in kidney disease[J]. Adv Drug Delivery Rev, 2010, 62(14): 1378-1389. [37] YANG C, NILSSON L, CHEEMA M U, et al. Chitosan/siRNA nanoparticles targeting cyclooxygenase type 2 attenuate unilateral ureteral obstruction-induced kidney injury in mice[J]. Theranostics, 2015, 5(2): 110-123. [38] PENG B, CHEN Y, LEONG K W. MicroRNA delivery for regenerative medicine[J]. Adv Drug Delivery Rev, 2015(88): 108-122. [39] LI C, WANG N, RAO P, et al. Role of the microRNA-29 family in myocardial fibrosis[J]. J Physiol Biochem, 2021, 77(3): 365-376. [40] LI Y F, JING Y, HAO J, et al. MicroRNA-21 in the pathogenesis of acute kidney injury[J]. Protein Cell, 2013, 4(11): 813-819. [41] WANG B, KOMERS R, CAREW R, et al. Suppression of microRNA-29 expression by tgf-beta 1 promotes collagen expression and renal fibrosis[J]. J Am Soc Nephrol, 2012, 23(2): 252-265. [42] HE Y, HUANG C, LIN X, LI J. MicroRNA-29 family, a crucial therapeutic target for fibrosis diseases[J]. Biochimie, 2013, 95(7): 1355-1359. [43] XU Y, NIU Y, WU B, et al. Extended-release of therapeutic microRNA via a host-guest supramolecular hydrogel to locally alleviate renal interstitial fibrosis[J]. Biomaterials, 2021(275): 120902. [44] GENG X, ZHANG M, LAI X, et al. Small-sized cationic miRi-PCNPs selectively target the kidneys for high-efficiency antifibrosis treatment[J]. Adv Healthc Mater, 2018, 7(21): 1800558. [45] MUMPER R J, CUI Z R. Genetic immunization by jet injection of targeted pDNA-coated nanoparticles[J]. Methods, 2003, 31(3): 255-262. [46] MIDGLEY A C, WEI Y, ZHU D,et al. Multifunctional natural polymer nanoparticles as antifibrotic gene carriers for CKD therapy[J]. J Am Soc Nephrol, 2020, 31(10): 2292-2311. [47] WANG P, MIN D, CHEN G, et al. Inorganic nanozymes: prospects for disease treatments and detection applications[J]. Front Chem, 2021(9):773285. [48] NELSON B C, JOHNSON M E, WALKER M L, et al. Antioxidant cerium oxide nanoparticles in biology and medicine[J]. Antioxid, 2016, 5(2): 15. [49] WANG M, ZENG F, NING F, et al. Ceria nanoparticles ameliorate renal fibrosis by modulating the balance between oxidative phosphorylation and aerobic glycolysis[J]. J Nanobiotechnol, 2022, 20(1): 1-18. [50] SAIFI M A, PEDDAKKULAPPAGARI C S, AHMAD A, et al. Leveraging the pathophysiological alterations of obstructive nephropathy to treat renal fibrosis by cerium oxide nanoparticles[J]. ACS Biomater Sci Eng, 2020, 6(6): 3563-3573. [51] ZHENG Z, DENG G, QI C, et al. Porous Se@SiO2 nanospheres attenuate ischemia/reperfusion (I/R)-induced acute kidney injury (AKI) and inflammation by antioxidative stress[J]. Int J Nanomed, 2019(14): 215-229. [52] NORDQUIST L, FRIEDERICH-PERSSON M, FASCHING A, et al. Activation of hypoxia-inducible factors prevents diabetic nephropathy[J]. J Am Soc Nephrol, 2015, 26(2): 328-338. [53] TANAKA T, KOJIMA I, OHSE T, et al. Cobalt promotes angiogenesis via hypoxia-inducible factor and protects tubulointerstitium in the remnant kidney model[J]. Lab Invest, 2005, 85(10): 1292-1307. [54] TAN L, LAI X, ZHANG M, et al. A stimuli-responsive drug release nanoplatform for kidney-specific anti-fibrosis treatment[J]. Biomater Sci, 2019, 7(4): 1554-1564. [55] SHARMA S, MASUD M K, KANETI Y V, et al. Extracellular vesicle nanoarchitectonics for novel drug delivery applications[J]. Small, 2021, 17(42): 2102220. [56] TANG T T, LV L L, WANG B,et al. Employing macrophage-derived microvesicle for kidney-targeted delivery of dexamethasone: an efficient therapeutic strategy against renal inflammation and fibrosis[J]. Theranostics, 2019, 9(16): 4740-4755. [57] JI C, ZHANG J, ZHU Y, et al. Exosomes derived from hucMSC attenuate renal fibrosis through CK1 delta/beta-TRCP-mediated YAP degradation[J]. Cell Death Dis, 2020, 11(5): 1-10. [58] HILL B D, ZAK A, KHERA E, et al. Engineering virus-like particles for antigen and drug delivery[J]. Curr Protein Pept Sc, 2018, 19(1): 112-127. [59] ZHANG X, CHEN Q, ZHANG L,et al. Tubule-specific protein nanocages potentiate targeted renal fibrosis therapy[J]. J Nanobiotechnol, 2021, 19(1): 1-17. [60] ELZOGHBY A O, SAMY W M, ELGINDY N A. Albumin-based nanoparticles as potential controlled release drug delivery systems[J]. J Control Release, 2012, 157(2): 168-182. [61] HUANG H, LIU Q, ZHANG T, et al. Farnesylthiosalicylic acid-loaded albumin nanoparticle alleviates renal fibrosis by inhibiting Ras/Raf1/p38 signaling pathway[J]. Int J Nanomed, 2021(16): 6441-6453. |