[1] KANWAR YS, SUN L, XIE P, et al. A glimpse of various pathogenetic mechanisms of diabetic nephropathy[J]. Annu Rev Pathol, 2011, 6:395-423. [2] SATIRAPOJ B. Review on pathophysiology and treatment of diabetic kidney disease[J]. J Med Assoc Thai, 2010, 93 Suppl 6:S228-241. [3] MATHIESON PW. The podocyte as a target for therapies——new and old[J]. Nat Rev Nephrol, 2011, 8(1):52-56. [4] LAPATSINA L, BRAND J, POOLE K, et al. Stomatin-domain proteins[J]. Eur J Cell Biol, 2012, 91(4):240-245. [5] AGGARWAL PK, VERON D, THOMAS DB, et al. Semaphorin3a promotes advanced diabetic nephropathy[J]. Diabetes, 2015, 64(5):1743-1759. [6] GNUDI L, THOMAS SM, VIBERTI G. Mechanical forces in diabetic kidney disease: a trigger for impaired glucose metabolism[J]. J Am Soc Nephrol, 2007, (8):2226-2232. [7] NAKAGAWA T, TANABE K, CROKER BP, et al. Endothelial dysfunction as a potential contributor in diabetic nephropathy[J]. Nat Rev Nephrol, 2011, 7(1):36-44. [8] LIU Y. New insights into epithelial-mesenchymal transition in kidney fibrosis[J]. J Am Soc Nephrol, 2010,(2):212-222. [9] ZEISBERG EM, POTENTA SE, SUGIMOTO H, et al. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition[J]. J Am Soc Nephrol, 2008, 19(12):2282-2287. [10] WEI J, SHI Y, HOU Y, et al. Knockdown of thioredoxin-interacting protein ameliorates high glucose-induced epithelial to mesenchymal transition in renal tubular epithelial cells[J]. Cell Signal, 2013, 25(12):2788-2796. [11] ZEISBERG M, NEILSON EG. Biomarkers for epithelial-mesenchymal transitions[J]. J Clin Invest, 2009, 119(6):1429-1437. [12] ZHANG L, DING F, CAO W, et al. Stomatin-like protein 2 is overexpressed in cancer and involved in regulating cell growth and cell adhesion in human esophageal squamous cell carcinoma[J]. Clin Cancer Res, 2006,12(5):1639-1646. |