[1] PRTRA J K,DAS G,FRACETO L F,et al.Nano based drug delivery systems:Recent developments and future prospects[J].J Nanobiotechnol,2018,16(1):71. [2] BLANCO E,SHEN H,FERRARI M.Principles of nanoparticle design for overcoming biological barriers to drug delivery[J].Nat Biotechnol,2015,33(9):941-951. [3] WILHELM S,TAVARES A J,DAI Q,et al.Analysis of nanoparticle delivery to tumours[J].Nat Rev Mater,2016,1(5):16014. [4] PRICE L S L,STERN S T,DEAL A M,et al.A reanalysis of nanoparticle tumor delivery using classical pharmacokinetic metrics[J].Sci Adv,2020,6(29):eaay9249. [5] GANTA S,DEVALAPALLY H,SHAHIWALA A,et al.A review of stimuli-responsive nanocarriers for drug and gene delivery[J].J Control Release,2008,126(3):187-204. [6] ZHANG J,LIN Y D,LIN Z,et al.Stimuli-responsive nanoparticles for controlled drug delivery in synergistic cancer immunotherapy[J].Adv Sci,2022,9(5):2103444. [7] ZHANG Y,UTHAMAN S,SONG W,et al.Multistimuli-responsive polymeric vesicles for accelerated drug release in chemo-photothermal therapy[J].ACS Biomater Sci Eng,2020,6(9):5012-5023. [8] WANG C,XIAO J,HU X,et al.Liquid core nanoparticle with high deformability enables efficient penetration across biological barriers[J].Adv Healthc Mater,2023,12(5):e2201889. [9] CHANG D,NIU S,CHU H,et al.Influence of amino acids on the aggregation behavior and drug solubilization of branched block copolymers[J].J Mol Liq,2022(356):119011. [10] HE Y J,FAN X Y,WU X Z,et al.pH-Responsive size-shrinkable mesoporous silica-based nanocarriers for improving tumor penetration and therapeutic efficacy[J].Nanoscale,2022,14(4):1271-1284. [11] SUN Y,SAI H,SPOTH K A,et al.Stimuli-responsive shapeshifting mesoporous silica nanoparticles[J].Nano Lett,2016,16(1):651-655. [12] WANG S,WANG Z,YU G,et al.Tumor-specific drug release and reactive oxygen species generation for cancer chemo/chemodynamic combination therapy[J].Adv Sci,2019,6(5):1801986. [13] CHENG G,ZONG W,GUO H,et al.Programmed size-changeable nanotheranostic agents for enhanced imaging-guided chemo/photodynamic combination therapy and fast elimination[J].Adv Mater,2021,33(21):e2100398. [14] NAM J,HA Y S,HWANG S,et al.pH-responsive gold nanoparticles-in-liposome hybrid nanostructures for enhanced systemic tumor delivery[J].Nanoscale,2013,5(21):10175-10178. [15] CAO Z,LI D,ZHAO L,et al.Bioorthogonal in situ assembly of nanomedicines as drug depots for extracellular drug delivery[J].Nature Communications,2022(13):2038. [16] ZHONG X Y,HE X F,WANG Y X,et al.Warburg effect in colorectal cancer:the emerging roles in tumor microenvironment and therapeutic implications[J].J Hematol Oncol,2022,15(1):160. [17] HARDY S,WONG N N,MULLER W J,et al.Overexpression of the protein tyrosine phosphatase PRL-2 correlates with breast tumor formation and progression[J].Cancer Res,2010,70(21):8959-8967. [18] HUANG R H,NAYEEM N,HE Y,et al.Self-complementary zwitterionic peptides direct nanoparticle assembly and enable enzymatic selection of endocytic pathways[J].Adv Mater,2022,34(1):e2104962. [19] AI X,HO C J H,AW J,et al.In vivo covalent cross-linking of photon-converted rare-earth nanostructures for tumour localization and theranostics[J].Nat Commun,2016(7):10432. [20] FU L H,WAN Y,QI C,et al.Nanocatalytic theranostics with glutathione depletion and enhanced reactive oxygen species generation for efficient cancer therapy[J].Adv Mater,2021,33(7):e2006892. [21] GAO Z,HOU Y,ZENG J,et al.Tumor microenvironment-triggered aggregation of antiphagocytosis 99m Tc-labeled Fe3O4 nanoprobes for enhanced tumor imaging in vivo[J].Adv Mater,2017,29(24):1701095. [22] CHENG X,SUN R,YIN L,et al.Light-triggered assembly of gold nanoparticles for photothermal therapy and photoacoustic imaging of tumors in vivo[J].Adv Mater,2017,29(6):1604894. [23] CAO Z W,LI W,LIU R,et al.pH- and enzyme-triggered drug release as an important process in the design of anti-tumor drug delivery systems[J].Biomed Pharmacother,2019(118):109340. [24] LI H J,DU J Z,DU X J,et al.Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy[J].Proc Natl Acad Sci USA,2016,113(15):4164-4169. [25] HAN M,HUANG-FU M Y,GUO W W,et al.MMP-2-sensitive HA end-conjugated poly(amidoamine)dendrimers via click reaction to enhance drug penetration into solid tumor[J].ACS Appl Mater Interfaces,2017,9(49):42459-42470. [26] HU C,CUN X,RUAN S,et al.Enzyme-triggered size shrink and laser-enhanced NO release nanoparticles for deep tumor penetration and combination therapy[J].Biomaterials,2018(168):64-75. [27] WANG J,SHEN S,LI J,et al.Precise depletion of tumor seed and growing soil with shrinkable nanocarrier for potentiated cancer chemoimmunotherapy[J].ACS Nano,2021,15(3):4636-4646. [28] JIN H,ZHU T,HUANG X,et al.ROS-responsive nanoparticles based on amphiphilic hyperbranched polyphosphoester for drug delivery:Light-triggered size-reducing and enhanced tumor penetration[J].Biomaterials,2019(211):68-80. [29] XU X,SAW P E,TAO W,et al.ROS-responsive polyprodrug nanoparticles for triggered drug delivery and effective cancer therapy[J].Adv Mater,2017,29(33):1700141. [30] LI S,CHEN L,HUANG K,et al.Tumor microenvironment-tailored weakly cell-interacted extracellular delivery platform enables precise antibody release and function[J].Adv Funct Materials,2019,29(43):1903296. [31] LIU G,ZHAO X,ZHANG Y,et al.Engineering biomimetic platesomes for pH-responsive drug delivery and enhanced antitumor activity[J].Adv Mater,2019,31(32):e1900795. [32] YANG G,PHUA S Z F,LIM W Q,et al.A hypoxia-responsive albumin-based nanosystem for deep tumor penetration and excellent therapeutic efficacy[J].Adv Mater,2019,31(25):e1901513. [33] ZHOU Z,CHAN A,WANG Z,et al.Synchronous chemoradiation nanovesicles by X-ray triggered cascade of drug release[J].Angew Chem Int Ed Engl,2018,57(28):8463-8467. [34] HU X X,HE P P,QI G B,et al.Transformable nanomaterials as an artificial extracellular matrix for inhibiting tumor invasion and metastasis[J].ACS Nano,2017,11(4):4086-4096. [35] ZHANG L,JING D,JIANG N,et al.Transformable peptide nanoparticles arrest HER2 signalling and cause cancer cell death in vivo[J].Nat Nanotechnol,2020,15(2):145-153. [36] LI L L,QIAO S L,LIU W J,et al.Intracellular construction of topology-controlled polypeptide nanostructures with diverse biological functions[J].Nat Commun,2017,8(1):1276. [37] SUN M,YUE T,WANG C,et al.Ultrasound-responsive peptide nanogels to balance conflicting requirements for deep tumor penetration and prolonged blood circulation[J].ACS Nano,2022,16(6):9183-9194. [38] CHENG K,DING Y,ZHAO Y,et al.Sequentially responsive therapeutic peptide assembling nanoparticles for dual-targeted cancer immunotherapy[J].Nano Lett,2018,18(5):3250-3258. |