广州医药 ›› 2025, Vol. 56 ›› Issue (10): 1311-1329.DOI: 10.20223/j.cnki.1000-8535.2025.10.001

• 专家述评 •    下一篇

智能可变形纳米载体的设计策略及其抗肿瘤应用研究进展

郑允圣1,2, 谢建聪2,3, 曹紫洋1,2   

  1. 1 华南理工大学附属第二医院(广州市第一人民医院)临床医学研究所(广东广州 510180)
    2 华南理工大学附属第二医院(广州市第一人民医院)医学研究与创新转化中心(广东广州 510005)
    3 暨南大学第一临床医学院(广东广州 510632)
  • 收稿日期:2024-12-12 出版日期:2025-10-20 发布日期:2025-11-28
  • 通讯作者: 曹紫洋,E-mail:mccaozy@scut.edu.cn
  • 作者简介:曹紫洋 华南理工大学附属第二医院(广州市第一人民医院)特聘副研究员,博士后合作导师,广州市卫健委优秀人才,研究方向为生物医用高分子载体材料及纳米医学; 近年来,以第一作者/通讯作者(含共同)在Nature NanotechnologyCell BiomaterialsNature CommunicationsAdvance Functional MaterialAdvanced Science等杂志上发表SCI论文十余篇; 申请发明专利7项,授权4项,转让1项; 主持广东省自然科学基金杰出青年项目、国家自然科学基金面上项目、广州市校(院)企联合项目,参与科技部重点研发计划青年科学家项目等。
  • 基金资助:
    广东省自然科学基金杰出青年项目(2024B1515020106); 广州市第一人民医院科研启动项目(KY09050042)

Recent development of smart deformable nanocarriers for antitumor application

ZHENG Yunsheng1,2, XIE Jiancong2,3, CAO Ziyang1,2   

  1. 1 Institute of Clinical Medicine,Guangzhou First People’s Hospital,the Second Affiliated Hospital,School of Medicine,South China University of Technology,Guangzhou 510180,China
    2 Center for Medical Research on Innovation and Translation,Guangzhou First People’s Hospital,the Second Affiliated Hospital,School of Medicine,South China University of Technology,Guangzhou 510005,China
    3 The First School of Clinical Medicine,Jinan University,Guangzhou 510632,China
  • Received:2024-12-12 Online:2025-10-20 Published:2025-11-28

摘要: 近年来,药物递送系统在肿瘤靶向治疗领域取得了显著进展,已有多种递药系统获批临床应用。其中,纳米药物因其能够减少传统小分子化疗药物的毒副作用、提高药物生物利用度,并通过增强通透性与滞留效应(EPR效应)实现肿瘤的被动靶向,从而显著提升治疗效果,受到广泛关注。尤其是具备尺寸可调、肿瘤特异性聚集、刺激响应性崩解及形貌转变等多功能的智能可变形纳米载体,已成为当前纳米递药载体研究的热点。这类载体能够感应肿瘤微环境中的特定刺激信号(如酸性pH值、过氧化还原状态、酶活性或过表达细胞因子),实现包括尺寸调控、聚集组装、结构崩解与形态重构等在内的多种动态变形行为,从而提升药物在肿瘤部位的滞留时间、渗透深度及控释能力,最终获得更优的抗肿瘤疗效。例如在肿瘤组织中实现纳米载体尺寸缩小可增强药物的组织穿透力;纳米粒子聚集变大会延长药物在病灶处的滞留时间;而快速响应性崩解则有助于药物在肿瘤局部实现高效释放。这些智能变形策略为纳米药物递送系统提供了更高的治疗可控性与精准性。基于其多样化的响应特性和结构可塑性,智能变形纳米载体在推动抗肿瘤药物的个体化治疗及联合疗法应用方面展现出巨大潜力。本文综述了近年来基于智能变形纳米载体增强抗肿瘤效果的研究进展,系统梳理了其设计策略,并深入探讨了其在肿瘤精准治疗中的应用前景。

关键词: 癌症治疗, 智能变形纳米载体, 药物递送, 刺激响应

Abstract: In recent years,drug delivery systems have made remarkable progress in the field of tumor-targeted therapy,with several platforms already approved for clinical use.Among them,nanomedicines have attracted considerable attention due to their ability to mitigate the side effects of conventional small-molecule chemotherapeutics,improve bioavailability,and passively accumulate at tumor sites via the enhanced permeability and retention(EPR)effect,thereby enhancing therapeutic efficacy.Of particular interest are stimuli-responsive,shape-transformable nanocarriers,which exhibit unique properties such as tunable size,tumor-specific accumulation,and structural adaptability in response to tumor-associated cues.These intelligent deformable nanocarriers are capable of undergoing various dynamic transformations—including aggregation,disassembly,size modulation,and morphological transitions—triggered by specific stimuli in the tumor microenvironment(TME),such as pH,redox potential,enzymes,or cytokines.Such transformations enhance drug retention at tumor sites,improve intratumoral penetration,and enable spatiotemporally controlled drug release,ultimately resulting in superior antitumor efficacy.For instance,nanosystems that shrink in size at tumor sites can promote deeper tissue penetration,while those that aggregate into larger assemblies can prolong local drug retention.Conversely,carriers that disassemble rapidly under tumor-specific stimuli allow for burst release of the encapsulated payload precisely at the disease site.These adaptive features hold great promise for improving the therapeutic performance of nanomedicines.Furthermore,the multifunctionality of intelligent deformable nanocarriers supports the development of personalized treatment regimens and combination therapies,offering novel strategies for cancer management.This review highlights recent advances in the design and application of shape-transformable nanocarriers for enhanced anticancer drug delivery,summarizing design principles and exploring their emerging potential in precision oncology.

Key words: cancer therapy, smart deformable nanocarriers, drug delivery, stimuli-responsive